
https://doi.org/10.1007/s11075-018-0508-0

ORIGINAL PAPER

A matrix-less and parallel interpolation–extrapolation
algorithm for computing the eigenvalues of preconditioned
banded symmetric Toeplitz matrices

Sven-Erik Ekström1 ·Carlo Garoni2,3

Received: 22 August 2017 / Accepted: 4 March 2018
© The Author(s) 2018

Abstract In the past few years, Bogoya, Böttcher, Grudsky, and Maximenko
obtained the precise asymptotic expansion for the eigenvalues of a Toeplitz matrix
Tn(f), under suitable assumptions on the generating function f , as the matrix size
n goes to infinity. On the basis of several numerical experiments, it was conjectured
by Serra-Capizzano that a completely analogous expansion also holds for the eigen-
values of the preconditioned Toeplitz matrix Tn(u)−1Tn(v), provided f = v/u is
monotone and further conditions on u and v are satisfied. Based on this expansion,
we here propose and analyze an interpolation–extrapolation algorithm for computing
the eigenvalues of Tn(u)−1Tn(v). The algorithm is suited for parallel implementation
and it may be called “matrix-less” as it does not need to store the entries of the matrix.
We illustrate the performance of the algorithm through numerical experiments and
we also present its generalization to the case where f = v/u is non-monotone.

Keywords Preconditioned Toeplitz matrices · Eigenvalues · Asymptotic eigenvalue
expansion · Polynomial interpolation · Extrapolation

Mathematics Subject Classification (2010) 15B05 · 65F15 · 65D05 · 65B05

� Sven-Erik Ekström
sven-erik.ekstrom@it.uu.se

Carlo Garoni
carlo.garoni@usi.ch; carlo.garoni@uninsubria.it

1 Department of Information Technology, Division of Scientific Computing, Uppsala University,
ITC, Lägerhyddsv. 2, Hus 2, P.O. Box 337, SE-751 05 Uppsala, Sweden

2 Institute of Computational Science, University of Italian Switzerland (USI), Via Giuseppe Buffi
13, 6900 Lugano, Switzerland

3 Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100
Como, Italy

Numer Algor (2019) 80:819–848

/ Published online: 24 March 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0508-0&domain=pdf
http://orcid.org/0000-0002-7875-7543
http://orcid.org/0000-0001-9720-092X
mailto:sven-erik.ekstrom@it.uu.se
mailto:

1 Introduction

A matrix of the form

[
ai−j

]n
i,j=1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a0 a−1 · · · · · · a−(n−1)

a1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . a−1

an−1 · · · · · · a1 a0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

whose entries are constant along each diagonal, is called a Toeplitz matrix. Given
a function g : [−π, π] → C belonging to L1([−π, π]), the nth Toeplitz matrix
associated with g is defined as

Tn(g) = [
ĝi−j

]n
i,j=1 ,

where the numbers ĝk are the Fourier coefficients of g,

ĝk = 1

2π

∫ π

−π

g(θ)e−ikθ dθ, k ∈ Z.

We refer to {Tn(g)}n as the Toeplitz sequence generated by g, which in turn is called
the generating function of {Tn(g)}n. It is not difficult to see that, whenever g is real,
Tn(g) is Hermitian for all n. Moreover, if g is real non-negative and not almost every-
where equal to zero in [−π, π], then Tn(g) is Hermitian positive definite for all n;
see [9, 14]. In the case where g is a real cosine trigonometric polynomial (RCTP),
that is, a function of the form

g(θ) = ĝ0 + 2
m∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝm ∈ R, m ∈ N,

the nth Toeplitz matrix generated by g is the real symmetric banded matrix given by

Tn(g) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ĝ0 ĝ1 · · · ĝm

ĝ1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

ĝm
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ĝm · · · ĝ1 ĝ0 ĝ1 · · · ĝm

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . ĝm

. . .
. . .

. . .
. . .

...

. . .
. . .

. . . ĝ1
ĝm · · · ĝ1 ĝ0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

820 Numer Algor (2019) 80:819–848

The numerical approximation of the eigenvalues of real symmetric banded
Toeplitz matrices is a problem that has been faced by several authors; see, e.g.,
Arbenz [2], Badı́a and Vidal [3], Bini and Pan [5], the authors and Serra-Capizzano
[13], and Trench [16–20]. Less attention has been devoted to the numerical approx-
imation of the eigenvalues of preconditioned banded symmetric Toeplitz matrices
of the form Tn(u)−1Tn(v), with u, v being RCTPs. Yet, this problem is worthy of
consideration as noted in [4, Section 1]. Some algorithms to solve it have been pro-
posed in [1, 4]. For general discussions on the various algorithmic proposals for
solving eigenvalue problems related to banded Toeplitz matrices, we refer the reader
[2, Section 1] and [4, Section 1].

In this paper, we propose a new algorithm for the numerical approximation of the
eigenvalues of preconditioned banded symmetric Toeplitz matrices. The algorithm
relies on the following conjecture, which has been formulated by Serra-Capizzano in
[1], on the basis of several numerical experiments.

Conjecture 1 Let u, v be RCTPs, with u > 0 on (0, π), and suppose that f = v/u is
monotone increasing over (0, π). Set Xn = Tn(u)−1Tn(v) for all n. Then, for every
integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic expansion
holds:

λj (Xn) = f (θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (1)

where:

• The eigenvalues of Xn are arranged in non-decreasing order, λ1(Xn) ≤ . . . ≤
λn(Xn).1

• {ck}k=1,2,... is a sequence of functions from (0, π) to R which depends only on
u, v.

• h = 1
n+1 and θj,n = jπ

n+1 = jπh.
• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|Ej,n,α| ≤ Cαhα+1 for some constant Cα depending only on α, u, v.

In the case where u = 1 identically, Conjecture 1 was originally formulated and
supported through numerical experiments in [13]. In the case where u = 1 identically
and v satisfies some additional assumptions, Conjecture 1 was formally proved by
Bogoya, Böttcher, Grudsky, and Maximenko in a sequence of recent papers [6, 8, 10].

Assuming Conjecture 1, in Section 2 of this paper, we describe and analyze
a new algorithm for computing the eigenvalues of Xn = Tn(u)−1Tn(v); and in
Section 3, we illustrate its performance through numerical experiments. The algo-
rithm, which is suited for parallel implementation and may be called matrix-less as
it does not need to store the entries of Xn, combines the extrapolation procedure
proposed in [1, 13]—which allows the computation of some of the eigenvalues of
Xn—with an appropriate interpolation process, thus allowing the simultaneous com-
putation of all the eigenvalues of Xn. In Section 4, we provide a generalization of the

1Note that the eigenvalues of Xn are real, because Xn is similar to the symmetric matrix
Tn(u)−1/2Tn(v)Tn(u)−1/2.

821Numer Algor (2019) 80:819–848

algorithm to the case where f = v/u is non-monotone; this generalization is based
on another conjecture which is analogous to Conjecture 1 and which will be dis-
cussed later on. In Section 5, we draw conclusions and suggest possible future lines of
research.

2 The algorithm

Throughout this paper, we associate with each positive integer n ∈ N = {1, 2, 3, . . .}
the stepsize h = 1

n+1 and the grid points θj,n = jπh, j = 1, . . . , n. For notational
convenience, we will always denote a positive integer and the associated stepsize in
a similar way, in the sense that if the positive integer is denoted by n, the associ-
ated stepsize is denoted by h; if the positive integer is denoted by nj , the associated
stepsize is denoted by hj ; etc. Throughout this section, we make the following
assumptions:

• u, v, f are as in Conjecture 1.
• n, n1, α ∈ N are fixed parameters and Xn = Tn(u)−1Tn(v).
• nk = 2k−1(n1 + 1) − 1 for k = 2, . . . , α.
• jk = 2k−1j1 for j1 = 1, . . . , n1 and k = 2, . . . , α. Note that jk = jk(j1)

depends not only on k but also on j1, though we hide the dependence on j1
for notational simplicity. Note also that jk is the index in {1, . . . , nk} such that
θjk,nk

= θj1,n1 . Hence, the grid {θjk,nk
: j1 = 1, . . . , n1} is the same as the grid

{θj1,n1 : j1 = 1, . . . , n1} for all k = 2, . . . , α.

A graphical representation of the grids {θ1,nk
, . . . , θnk,nk

}, k = 1, . . . , α, is reported
in Fig. 1 for n1 = 5 and α = 4. For each “level” k = 2, . . . , α, the corresponding
red circles highlight the subgrid {θjk,nk

: j1 = 1, . . . , n1} which coincides with the
coarsest grid {θj1,n1 : j1 = 1, . . . , n1}.

Fig. 1 Representation of the grids {θ1,nk
, . . . , θnk,nk

}, k = 1, . . . , α, for n1 = 5 and α = 4

822 Numer Algor (2019) 80:819–848

2.1 Description and formulation of the algorithm

The algorithm we are going to describe is designed for computing the eigenvalues of
Xn in the case where n is large with respect to n1, . . . , nα , so that the computation
of the eigenvalues of Xn is hard from a computational viewpoint but the computation
of the eigenvalues of Xn1 , . . . , Xnα —which is required in the algorithm—can be
efficiently performed by any standard eigensolver (e.g., MATLAB’s eig function);
see also Remark 1 below. The algorithm is composed of two phases: a first phase
where we invoke extrapolation procedures from [1, 13] and a second phase where
local interpolation techniques are employed.

Extrapolation For each fixed j1 = 1, . . . , n1, we apply α times the expansion (1)
with n = n1, n2, . . . , nα and j = j1, j2, . . . , jα . Since θj1,n1 = θj2,n2 = . . . = θjα,nα

(by definition of j2, . . . , jα), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ej1,n1,0 = c1(θj1,n1)h1 + c2(θj1,n1)h
2
1 + . . . + cα(θj1,n1)h

α
1 + Ej1,n1,α

Ej2,n2,0 = c1(θj1,n1)h2 + c2(θj1,n1)h
2
2 + . . . + cα(θj1,n1)h

α
2 + Ej2,n2,α

...

Ejα,nα,0 = c1(θj1,n1)hα + c2(θj1,n1)h
2
α + . . . + cα(θj1,n1)h

α
α + Ejα,nα,α

(2)

where

Ejk,nk,0 = λjk
(Xnk

) − f (θj1,n1), k = 1, . . . , α,

and

|Ejk,nk,α| ≤ Cαhα+1
k , k = 1, . . . , α. (3)

Let c̃1(θj1,n1), . . . , c̃α(θj1,n1) be the approximations of c1(θj1,n1), . . . , cα(θj1,n1)

obtained by removing all the errors Ej1,n1,α, . . . , Ejα,nα,α in (2) and by solving the
resulting linear system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ej1,n1,0 = c̃1(θj1,n1)h1 + c̃2(θj1,n1)h
2
1 + . . . + c̃α(θj1,n1)h

α
1

Ej2,n2,0 = c̃1(θj1,n1)h2 + c̃2(θj1,n1)h
2
2 + . . . + c̃α(θj1,n1)h

α
2

...

Ejα,nα,0 = c̃1(θj1,n1)hα + c̃2(θj1,n1)h
2
α + . . . + c̃α(θj1,n1)h

α
α

(4)

Note that this way of computing approximations for c1(θj1,n1), . . . , cα(θj1,n1) was
already proposed in [1, 13], and it is completely analogous to the Richardson extrapo-
lation procedure that is employed in the context of Romberg integration to accelerate
the convergence of the trapezoidal rule [15, Section 3.4]. In this regard, the asymp-
totic expansion (1) plays here the same role as the Euler–Maclaurin summation
formula [15, Section 3.3]. For more advanced studies on extrapolation methods,
we refer the reader to [11]. The next theorem shows that the approximation error
|ck(θj1,n1) − c̃k(θj1,n1)| is O(hα−k+1

1).

823Numer Algor (2019) 80:819–848

Theorem 1 There exists a constant Aα depending only on α, u, v such that, for j1 =
1, . . . , n1 and k = 1, . . . , α,

|ck(θj1,n1) − c̃k(θj1,n1)| ≤ Aαhα−k+1
1 . (5)

Proof See Appendix A.

Interpolation Fix an index j ∈ {1, . . . , n}. To compute an approximation of
λj (Xn) through the expansion (1), we would need the value ck(θj,n) for each
k = 1, . . . , α. Of course, ck(θj,n) is not available in practice, but we can approx-
imate it by interpolating in some way the values c̃k(θj1,n1), j1 = 1, . . . , n1.
For example, we may define c̃k(θ) as the interpolation polynomial of the data
(θ1,n1 , c̃k(θ1,n1)), . . . , (θn1,n1 , c̃k(θn1,n1))—so that c̃k(θ) is expected to be an approx-
imation of ck(θ) over the whole interval (0, π)—and take c̃k(θj,n) as an approx-
imation to ck(θj,n). It is known, however, that interpolation over a large number
of uniform nodes is not advisable as it may give rise to spurious oscillations
(Runge’s phenomenon [12, p. 78]). It is therefore better to adopt another kind of
approximation. An alternative could be the following: we approximate ck(θ) by the
spline function c̃k(θ) which is linear on each interval [θj1,n1 , θj1+1,n1] and takes
the value c̃k(θj1,n1) at θj1,n1 for all j1 = 1, . . . , n1. This strategy removes for
sure any spurious oscillation, yet it is not accurate. In particular, it does not pre-
serve the accuracy of approximation at the nodes θj1,n1 established in Theorem 1,
i.e., there is no guarantee that |ck(θ) − c̃k(θ)| ≤ Bαhα−k+1

1 for θ ∈ (0, π) or
|ck(θj,n) − c̃k(θj,n)| ≤ Bαhα−k+1

1 for j = 1, . . . , n, with Bα being a constant
depending only on α, u, v. As proved in Theorem 2, a local approximation strategy
that preserves the accuracy (5), at least if ck(θ) is sufficiently smooth, is the follow-
ing: let θ(1), . . . , θ (α−k+1) be α − k + 1 points of the grid {θ1,n1 , . . . , θn1,n1} which
are closest to the point θj,n,2 and let c̃k,j (θ) be the interpolation polynomial of the
data (θ(1), c̃k(θ

(1))), . . . , (θ(α−k+1), c̃k(θ
(α−k+1))); then, we approximate ck(θj,n) by

c̃k,j (θj,n). Note that, by selecting α − k + 1 points from {θ1,n1 , . . . , θn1,n1}, we are
implicitly assuming that n1 ≥ α − k + 1.

Theorem 2 Let 1 ≤ k ≤ α, and suppose n1 ≥ α − k + 1 and ck ∈ Cα−k+1([0, π]).
For j = 1, . . . , n, if θ(1), . . . , θ (α−k+1) are α − k + 1 points of {θ1,n1 , . . . , θn1,n1}
which are closest to θj,n, and if c̃k,j (θ) is the interpolation polynomial of the data
(θ(1), c̃k(θ

(1))), . . . , (θ(α−k+1), c̃k(θ
(α−k+1))), then

|ck(θj,n) − c̃k,j (θj,n)| ≤ Bαhα−k+1
1 (6)

for some constant Bα depending only on α, u, v.

Proof See Appendix A.

2These α − k + 1 points are uniquely determined by θj,n except in the case where θj,n coincides with
either a grid point θj1,n1 or the midpoint between two consecutive grid points θj1,n1 and θj1+1,n1 .

824 Numer Algor (2019) 80:819–848

Formulation of the algorithm We are now ready to formulate our algorithm for
computing the eigenvalues of Xn. As we shall see in Remark 4, the algorithm is suited
for parallel implementation. Since it does not even need to store the entries of Xn, it
may be called matrix-less. It can be used for computing either a specific eigenvalue
λj (Xn), a subset of the eigenvalues of Xn, or the whole spectrum of Xn. A plain
(non-parallel) MATLAB implementation of this algorithm is reported in Appendix B.

Algorithm 1 Given two RCTPs u, v (with u > 0 on (0, π) and f = v/u monotone
increasing over (0, π) as in Conjecture 1), three integers n, n1, α ∈ N with n1 ≥ α,
and S ⊆ {1, . . . , n}, we compute an approximation of the eigenvalues {λj (Xn) : j ∈
S} as follows:

1. For j1 = 1, . . . , n1 compute c̃1(θj1,n1), . . . , c̃α(θj1,n1) by solving (4)
2. For j ∈ S

• For k = 1, . . . , α

– Determine α − k + 1 points θ(1), . . . , θ (α−k+1) ∈ {θ1,n1 , . . . , θn1,n1}
which are closest to θj,n

– Compute c̃k,j (θj,n), where c̃k,j (θ) is the interpolation polynomial of
(θ(1), c̃k(θ

(1))), . . . , (θ(α−k+1), c̃k(θ
(α−k+1)))

• Compute λ̃j (Xn) = f (θj,n) + ∑α
k=1 c̃k,j (θj,n)h

k

3. Return {λ̃j (Xn) : j ∈ S} as an approximation to {λj (Xn) : j ∈ S}

Remark 1 Algorithm 1 is specifically designed for computing the eigenvalues of Xn

in the case where the matrix size n is quite large. When applying this algorithm, it
is implicitly assumed that n1 and α are small (much smaller than n), so that each
nk = 2k−1(n1 + 1) − 1 is small as well and the computation of the eigenvalues
of Xnk

—which is required in the first step—can be efficiently performed by any
standard eigensolver (e.g., MATLAB’s eig function).

Remark 2 A careful evaluation shows that the computational cost of Algorithm 1 is
bounded by

C(α2n1 + α3|S|) +
α∑

k=1

Ceig(nk),

where |S| is the cardinality of S, C is a constant depending only on f , and Ceig(nk)

is the cost for computing the eigenvalues of Xnk
.

Remark 3 Algorithm 1 can be optimized in several ways. For example, if S = {j}, so
that only the j th eigenvalue λj (Xn) must be computed, then in the first step one can
just compute the values c̃1(θj1,n1), . . . , c̃α(θj1,n1) for θj1,n1 ∈ {θ(1), . . . , θ (α)}, where
θ(1), . . . , θ (α) are α points in {θ1,n1 , . . . , θn1,n1} which are closest to θj,n. Indeed,
only these values are needed in the second step. A similar consideration applies in the
case where only the extremal eigenvalues of Xn must be computed, and also in the
case where S is a small subset of {1, . . . , n} of the form {j, . . . , j + r}, with r � n.

825Numer Algor (2019) 80:819–848

Remark 4 Suppose |S| = n and consider the ideal situation where we have n proces-
sors. Then, the j th processor can compute the j th eigenvalue λj (Xn) independently
of the others. In view of Remark 3, the j th processor can act as follows:

• In the first step of the algorithm, it computes only the values
c̃1(θj1,n1), . . . , c̃α(θj1,n1) for θj1,n1 ∈ {θ(1), . . . , θ (α)}, where θ(1), . . . , θ (α) are
α points in {θ1,n1 , . . . , θn1,n1} which are closest to θj,n.

• It performs the second step of the algorithm for the index j only.

It is clear that such a parallel implementation is very fast as the computation of all
the eigenvalues of Xn takes the same time as the computation of one eigenvalue only.
A similar consideration also applies in the case where |S| < n and we have |S|
processors, each of which has to compute only one of the requested |S| eigenvalues.
In a more realistic situation, we will not have a number of processors equal to |S| if
|S| is large. Instead, we will have p processors with p � |S|. In this case, we can
divide S into p different subsets S1, . . . , Sp of approximately the same cardinality
and assign to the ith processor the computation of the eigenvalues corresponding
to Si , i = 1, . . . , p. When doing so, it is advisable that each Si is constructed so
that the “positions” θj,n of the related eigenvalues λj (Xn) are close to each other,
because in this way each processor will have the possibility to perform a reduced
form of the first step of the algorithm, in analogy with what has been explained
above for the case p = |S|. For example, if |S| = n and n is a multiple of p,
then we can assign to the ith processor the computation of the eigenvalues λj (Xn)

for j = (i − 1)(n/p) + 1, . . . , i(n/p), so that in the first step of the algorithm
the ith processor will only have to compute c̃1(θj1,n1), . . . , c̃α(θj1,n1) for θj1,n1 in a
neighborhood of the interval [θ(i−1)(n/p)+1,n, θi(n/p),n].

2.2 Error estimate

Theorem 3 Assume that Conjecture 1 holds. Suppose n ≥ n1 ≥ α and ck ∈
Cα−k+1([0, π]) for k = 1, . . . , α. Let (λ̃1(Xn), . . . , λ̃n(Xn)) be the approximation
of (λ1(Xn), . . . , λn(Xn)) computed by Algorithm 1. Then, there exists a constant Dα

depending only on α, u, v such that, for j = 1, . . . , n,

|λj (Xn) − λ̃j (Xn)| ≤ Dαhα
1 h.

Proof By (1) and Theorem 2,

|λj (Xn) − λ̃j (Xn)| =
∣∣∣∣∣
f (θj,n)+

α∑

k=1

ck(θj,n)h
k+Ej,n,α−f (θj,n)−

α∑

k=1

c̃k,j (θj,n)h
k

∣∣∣∣∣

=
∣∣∣∣∣

α∑

k=1

(ck(θj,n) − c̃k,j (θj,n))h
k + Ej,n,α

∣∣∣∣∣

≤ Bα

α∑

k=1

hα−k+1
1 hk + Cαhα+1 ≤ Dαhα

1 h,

where Dα = (α + 1) max(Bα, Cα).

826 Numer Algor (2019) 80:819–848

Remark 5 The error estimate provided in Theorem 3 suggests that the eigenvalue
approximations provided by Algorithm 1 improve as n increases, i.e., as h decreases.
Numerical experiments reveal that this is in fact the case (see Example 2 below).

Remark 6 Theorem 3 shows that, for any fixed α ≥ 1, the numerical eigenvalues
computed by Algorithm 1 converge like hα

1 to the exact eigenvalues as n1 grows.
In practice, it is advisable to fix α and increase n1 until a proper stopping criterion
is reached. The other way (fix n1 and increase α) is not advisable as the constant
Dα in Theorem 3 apparently grows very quickly with α (see Example 1 below) and,
consequently, there is no guarantee on the convergence of the algorithm as α grows
(see Example 5 below).

3 Numerical experiments

In this section, we illustrate through numerical examples the performance of Algo-
rithm 1. Numerical experiments have been performed with MATLAB R2015b (64
bit) on a platform with 4GB RAM, using an Intel� Celeron� Processor N2820 (up
to 2.39 GHz, 1 MB L2 cache). The CPU times for Algorithm 1 refer to the plain
MATLAB implementation reported in Appendix B. In what follows, the symbol εj,n

denotes the error |λj (Xn) − λ̃j (Xn)|, which occurs when approximating the exact
eigenvalue λj (Xn) with the corresponding numerical eigenvalue λ̃j (Xn) computed
by Algorithm 1. The inputs u, v, n, n1, α with which Algorithm 1 is applied are
specified in each example.

Example 1 Let

u(θ) = 1,

v(θ) = 6 − 8 cos(θ) + 2 cos(2θ).

Note that f (θ) = v(θ)/u(θ) = v(θ) is monotone increasing on (0, π). Suppose
we want to approximate the eigenvalues of Xn = Tn(u)−1Tn(v) = Tn(f) for
n = 5000. Let λ̃j (Xn) be the approximation of λj (Xn) obtained by applying Algo-
rithm 1 with n1 = 10 and α = 7. In Fig. 2, we plot the errors εj,n versus θj,n for j =
1, . . . , n. We note that the largest errors are attained when either θj,n ≈ 0 or θj,n ≈ π .
As highlighted also in Example 3 below, this is probably due to two concomitant
factors:

• The errors εj,n are supposed to be smaller for θj,n ∈ [θ1,n1 , θn1,n1] =
[π/11, 10π/11], because in this case the approximations c̃k,j (θj,n) computed
by Algorithm 1 for the values ck(θj,n) are expected to be more accurate as
the interpolation polynomial c̃k,j (θ) is evaluated inside the convex hull of the
interpolation nodes.

• θ = 0 and θ = π are the two points on [0, π] where f ′ vanishes, which means
that the monotonicity of f is “weak” around these points (recall that Algo-
rithm 1 works under the assumption that f is monotone as in Conjecture 1).

827Numer Algor (2019) 80:819–848

Fig. 2 Example 1: errors εj,n versus θj,n for j = 1, . . . , n in the case where u(θ) = 1, v(θ) = 6 −
8 cos(θ) + 2 cos(2θ), n = 5000, n1 = 10, and α = 7

In reference to the previous discussion, we note that the maximum error for θj,n ∈
[θ1,n1 , θn1,n1] is given by

max{εj,n : θj,n ∈ [θ1,n1 , θn1,n1]} ≈ 1.7803 · 10−7,

which is about two order of magnitude less than

max
j=1,...,n

εj,n ≈ 9.5167 · 10−6.

A careful look at Fig. 2 shows that, aside from the exceptional minimum attained
inside the interval (5π/11, 6π/11), the local minima of εj,n are attained when θj,n

is approximately equal to some of the grid points θj1,n1 , j1 = 1, . . . , n1. This is no
surprise, because for θj,n = θj1,n1 we have c̃k,j (θj,n) = c̃k(θj1,n1) and ck(θj,n) =
ck(θj1,n1), which means that the error of the approximation c̃k,j (θj,n) ≈ ck(θj,n)

reduces to the error of the approximation c̃k(θj1,n1) ≈ ck(θj1,n1); that is, we are not
introducing further error due to the interpolation process. To conclude, we make the
following observation: for α, u, v as in this example, Theorem 3 yields

Dα ≥ maxj=1,...,n εj,n

hα
1 h

≈ 9.2745 · 105 > αα = 8.23543 · 105.

This suggests that, unfortunately, the best constant Dα for which the error estimate
of Theorem 3 is satisfied grows very quickly with α.

Example 2 Let u, v, f be as in Example 1. Suppose we want to approximate the
eigenvalues of Xn = Tn(u)−1Tn(v) = Tn(f) for n = 10000. Let λ̃j (Xn) be the
approximation of λj (Xn) obtained by applying Algorithm 1 with n1 = 10 and α = 7
as in Example 1. In Fig. 3, we plot the errors εj,n versus θj,n for j = 1, . . . , n. We
note that the errors in Fig. 3 are smaller than in Fig. 2. This shows that the eigenvalue
approximations provided by Algorithm 1 improve as n increases (see also Remark 5).

828 Numer Algor (2019) 80:819–848

Fig. 3 Example 2: errors εj,n versus θj,n for j = 1, . . . , n in the case where u(θ) = 1, v(θ) = 6 −
8 cos(θ) + 2 cos(2θ), n = 10000, n1 = 10, and α = 7

Example 3 Let

u(θ) = 1,

v(θ) = − 1

4
− 1

2
cos(θ) + 1

4
cos(2θ) − 1

12
cos(3θ).

Note that f (θ) = v(θ)/u(θ) = v(θ) is monotone increasing on (0, π). Suppose we
want to approximate the eigenvalues of Xn = Tn(u)−1Tn(v) = Tn(f) for n = 10000.
Let λ̃

(m)
j (Xn) be the approximation of λj (Xn) obtained by applying Algorithm 1 with

n1 = 10 · 2m−1 and α = 5. In Fig. 4, we plot the errors ε
(m)
j,n = |λj (Xn) − λ̃

(m)
j (Xn)|

versus θj,n for j = 1, . . . , n and m = 1, 2, 3, 4. We see from the figure that, as
m increases, the error decreases rather quickly everywhere except in a neighbor-
hood of the point θ = π/3 where f ′ vanishes. Actually, the three points of [0, π]
where f ′ vanishes are 0, π/3, π , and these are precisely the points around which
the error is higher than elsewhere. We remark that, as in Examples 1 and 2, the error
ε
(m)
j,n attains its local minima when θj,n is approximately equal to some of the nodes

θ1,n1 , . . . , θn1,n1 .

Example 4 Let

u(θ) = 1,

v(θ) = 301

400
− cos(θ) + 1

5
cos(2θ) + 1

10
cos(3θ) − 1

20
cos(4θ) + 1

400
cos(6θ).

Note that f (θ) = v(θ)/u(θ) = v(θ) is monotone increasing on (0, π) and
f ′(θ) = 0 only for θ = 0, π .3 Suppose we want to approximate the eigenvalues
of Xn = Tn(u)−1Tn(v) = Tn(f) for n = 10000. Let λ̃

(m)
j (Xn) be the approxima-

tion of λj (Xn) obtained by applying Algorithm 1 with n1 = 25 · 2m−1 and α = 5.

In Fig. 5, we plot the errors ε
(m)
j,n versus θj,n for j = 1, . . . , n and m = 1, 2, 3, 4.

Considerations analogous to those of Example 3 apply also in this case.

3Note that we always have g′(0) = g′(π) = 0 whenever g(θ) is an RCTP.

829Numer Algor (2019) 80:819–848

Fig. 4 Example 3: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1, v(θ) = − 1

4 −
1
2 cos(θ) + 1

4 cos(2θ) − 1
12 cos(3θ), n = 10000, n1 = 10 · 2m−1, and α = 5

830 Numer Algor (2019) 80:819–848

Fig. 5 Example 4: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1, v(θ) = 301

400 −
cos(θ) + 1

5 cos(2θ) + 1
10 cos(3θ) − 1

20 cos(4θ) + 1
400 cos(6θ), n = 10000, n1 = 25 · 2m−1, and α = 5

831Numer Algor (2019) 80:819–848

Example 5 Let u, v, f as in Example 4. Suppose we want to approximate the eigen-
values of Xn = Tn(u)−1Tn(v) = Tn(f) for n = 10000. Let λ̃

(m)
j (Xn) be the

approximation of λj (Xn) obtained by applying Algorithm 1 with n1 = 25 and

α = 4 + m. In Fig. 6, we plot the errors ε
(m)
j,n versus θj,n for j = 1, . . . , n and

m = 1, 2, 3, 4. By comparing Fig. 5 with Fig. 6, we see that the strategy of keeping
n1 fixed and increasing α is much less efficient than the strategy of keeping α fixed
and increasing n1. Indeed, while in Fig. 5 the error ε

(m)
j,n decreases approximately in a

uniform way by one order of magnitude as m increases, this is not observed in Fig. 6.
Note also that the computational cost of Algorithm 1 for n1 = 25 · 2m−1 and α = 5
(as in Fig. 5) is essentially the same as the cost of Algorithm 1 for n1 = 25 and
α = 4 + m (as in Fig. 6), because the main task of the algorithm in both cases is the
computation of the eigenvalues of Xnα , and in both cases nα is approximately equal
to 25 · 2m+3. The bad behavior of Algorithm 1 when increasing α finds an explana-
tion in the fact that, as observed in Example 1, the constant Dα appearing in the error
estimate of Theorem 3 apparently grows very quickly with α.

Example 6 Let

u(θ) = 3 + 2 cos(θ),

v(θ) = 2 − cos(θ) − cos(2θ).

Note that f (θ) = v(θ)/u(θ) = 1 − cos(θ) is monotone increasing on (0, π) and
f ′(θ) = 0 only for θ = 0, π . Suppose we want to approximate the eigenvalues of
Xn = Tn(u)−1Tn(v) for n = 5000. Let λ̃

(m)
j (Xn) be the approximation of λj (Xn)

obtained by applying Algorithm 1 with n1 = 50 · 2m−1 and α = 4. The graph of the
errors ε

(m)
j,n versus θj,n is shown in Fig. 7 for j = 1, . . . , n and m = 1, 2, 3, 4. Table 1

compares the CPU times for computing the eigenvalues of Xn by using MATLAB’s
eig function and Algorithm 1.

Example 7 This example is suggested by the cubic B-spline isogeometric analysis
discretization of second-order eigenvalue problems [14, Section 10.7.3]. Let

u(θ) = 1208 + 1191 cos(θ) + 120 cos(2θ) + cos(3θ),

v(θ) = 40 − 15 cos(θ) − 24 cos(2θ) − cos(3θ).

It can be shown that u(θ) > 0 on (0, π),

f (θ) = v(θ)

u(θ)
= 40 − 15 cos(θ) − 24 cos(2θ) − cos(3θ)

1208 + 1191 cos(θ) + 120 cos(2θ) + cos(3θ)

is monotone increasing on (0, π), and f ′(θ) = 0 only for θ = 0, π . Suppose we
want to approximate the eigenvalues of Xn = Tn(u)−1Tn(v) for n = 5000. Let
λ̃

(m)
j (Xn) be the approximation of λj (Xn) obtained by applying Algorithm 1 with

n1 = 50 · 2m−1 and α = 4. The graph of the errors ε
(m)
j,n versus θj,n is shown in Fig. 8

for j = 1, . . . , n and m = 1, 2, 3, 4. The CPU times are reported in Table 2.

832 Numer Algor (2019) 80:819–848

Fig. 6 Example 5: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1, v(θ) = 301

400 −
cos(θ) + 1

5 cos(2θ) + 1
10 cos(3θ) − 1

20 cos(4θ) + 1
400 cos(6θ), n = 10000, n1 = 25, and α = 4 + m

833Numer Algor (2019) 80:819–848

Fig. 7 Example 6: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 3 + 2 cos(θ),

v(θ) = 2 − cos(θ) − cos(2θ), n = 5000, n1 = 50 · 2m−1, and α = 4

834 Numer Algor (2019) 80:819–848

Table 1 Example 6 (Fig. 7):
CPU times for computing the
eigenvalues of Xn in the case
where u(θ) = 3 + 2 cos(θ),
v(θ) = 2 − cos(θ) − cos(2θ),
and n = 5000

Method CPU time

Algorithm 1 with n1 = 50 and α = 4 1.81 s

Algorithm 1 with n1 = 100 and α = 4 7.14 s

Algorithm 1 with n1 = 200 and α = 4 32.45 s

Algorithm 1 with n1 = 400 and α = 4 144.08 s

MATLAB’s eig function 694.76 s

Example 8 Let

u(θ) = 8 − 3 cos(θ) − 4 cos(2θ) − cos(3θ),

v(θ) = 35

2
− 12 cos(θ) − 6 cos(2θ) + 1

2
cos(4θ).

It can be shown that u(θ) > 0 on (0, π),

f (θ) = v(θ)

u(θ)
= 2 − cos(θ)

is monotone increasing on (0, π), and f ′(θ) = 0 only for θ = 0, π . Suppose we want
to approximate the smallest five eigenvalues of Xn = Tn(u)−1Tn(v) for n = 5000.
Let λ̃j (Xn) be the approximations of λj (Xn) obtained by applying Algorithm 1 with
n1 = 100 and α = 4. Table 3 shows the errors εj,n for j = 1, . . . , 5, whereas Table 4
compares the CPU times for computing the eigenvalues of Xn by using Algorithm 1,
MATLAB’s eig function, and MATLAB’s eigs function (applied to the generalized
eigenvalue problem Tn(v)x = λ Tn(u)x with Tn(v) and Tn(u) allocated as sparse
matrices through MATLAB’s sparse command).

4 Generalization to the non-monotone case

With reference to Conjecture 1, suppose that the function f = v/u is monotone
decreasing on (0, π). Then, −f = −v/u is monotone increasing on (0, π) and,
moreover, Tn(u)−1Tn(v) = −Tn(u)−1Tn(−v). This immediately implies that Algo-
rithm 1 allows one to compute the eigenvalues of Tn(u)−1Tn(v) even in the case
where f = v/u is monotone decreasing on (0, π): it suffices to apply the algorithm
with Xn = Tn(u)−1Tn(−v). Some limitations on the applicability of Algorithm 1
arise when f is non-monotone on (0, π). This is precisely the case we are going to
investigate in this section. We begin by formulating the following conjecture.

Conjecture 2 Let u, v be RCTPs, with u > 0 on (0, π), and suppose that f = v/u

restricted to the interval I ⊆ (0, π) is monotone and f −1(f (I)) = I . Set Xn =
Tn(u)−1Tn(v) for all n. Then, for every integer α ≥ 0, every n and every j = 1, . . . , n

such that θj,n ∈ I , the following asymptotic expansion holds:

λρn(j)(Xn) = f (θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (7)

835Numer Algor (2019) 80:819–848

Fig. 8 Example 7: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1208+1191 cos(θ)+

120 cos(2θ) + cos(3θ), v(θ) = 40 − 15 cos(θ) − 24 cos(2θ) − cos(3θ), n = 5000, n1 = 50 · 2m−1, and
α = 4

836 Numer Algor (2019) 80:819–848

Table 2 Example 7 (Fig. 8):
CPU times for computing the
eigenvalues of Xn in the case
where
u(θ) = 1208 + 1191 cos(θ) +
120 cos(2θ) + cos(3θ),
v(θ) = 40 − 15 cos(θ) −
24 cos(2θ) − cos(3θ), and
n = 5000

Method CPU time

Algorithm 1 with n1 = 50 and α = 4 1.69 s

Algorithm 1 with n1 = 100 and α = 4 2.77 s

Algorithm 1 with n1 = 200 and α = 4 18.30 s

Algorithm 1 with n1 = 400 and α = 4 280.27 s

MATLAB’s eig function 1265.55 s

where:

• The eigenvalues of Xn are arranged in non-decreasing order, λ1(Xn) ≤ . . . ≤
λn(Xn).

• ρn = σ−1
n is the inverse of σn, where σn is a permutation of {1, . . . , n} such that

f (θσn(1),n) ≤ . . . ≤ f (θσn(n),n).
• {ck}k=1,2,... is a sequence of functions from I to R which depends only on u, v.
• h = 1

n+1 and θj,n = jπ
n+1 = jπh.

• Ej,n,α = O(hα+1) is the error, which satisfies the inequality |Ej,n,α| ≤ Cαhα+1

for some constant Cα depending only on α, u, v.

Conjecture 2 is clearly an extension of Conjecture 1. Indeed, in the case where f is
monotone increasing on (0, π), if we take I = (0, π) and we note that both σn and ρn

reduce to the identity on {1, . . . , n}, we see that Conjecture 2 reduces to Conjecture 1.
Conjecture 2 is based on the numerical experiments carried out in [1, 13]. In the case
where u = 1 identically, it was already formulated in [13]. In the case where u = 1
identically and α = 0, it can be formally proved by adapting the argument used by
Bogoya, Böttcher, Grudsky, and Maximenko in the proof of [7, Theorem 1.6].

In the situation described in Conjecture 2, we propose the following natural
modification of Algorithm 1 for computing the eigenvalues of Xn corresponding
to the the interval I (that is, the eigenvalues λρn(j)(Xn) corresponding to points
θj,n ∈ I). In what follows, for any integer n1, we denote by n1(I) the cardinality of
{θ1,n1 , . . . , θn1,n1} ∩ I .

Algorithm 2 With the notation introduced in Conjecture 2, given two RCTPs u, v

(with u > 0 on (0, π) and f = v/u such that f restricted to the interval I ⊆ (0, π)

is monotone and f −1(f (I)) = I), three integers n, n1, α ∈ N with n1(I) ≥ α and

Table 3 Example 8: errors εj,n for j = 1, . . . , 5, in the case where u(θ) = 8 − 3 cos(θ) − 4 cos(2θ) −
cos(3θ), v(θ) = 35

2 − 12 cos(θ) − 6 cos(2θ) + 1
2 cos(4θ), n = 5000, n1 = 100, and α = 4

j 1 2 3 4 5

εj,n 1.56 · 10−6 1.42 · 10−6 1.47 · 10−6 1.34 · 10−6 1.39 · 10−6

837Numer Algor (2019) 80:819–848

Table 4 Example 8: CPU times
for computing the smallest five
eigenvalues of Xn in the case
where u(θ) = 8 − 3 cos(θ) −
4 cos(2θ) − cos(3θ),
v(θ) = 35

2 − 12 cos(θ) −
6 cos(2θ) + 1

2 cos(4θ), and
n = 5000

Method CPU time

Algorithm 1 with n1 = 100 and α = 4 1.13 s

MATLAB’s eig function 346.21 s

MATLAB’s eigs function Does not converge

S ⊆ I , we compute approximations of the eigenvalues {λρn(j)(Xn) : θj,n ∈ S} as
follows:

1. For j1 = 1, . . . , n1 such that θj1,n1 ∈ I compute c̃1(θj1,n1), . . . , c̃α(θj1,n1) by
solving the linear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ej1,n1,0 = c̃1(θj1,n1)h1 + c̃2(θj1,n1)h
2
1 + . . . + c̃α(θj1,n1)h

α
1

Ej2,n2,0 = c̃1(θj1,n1)h2 + c̃2(θj1,n1)h
2
2 + . . . + c̃α(θj1,n1)h

α
2

...

Ejα,nα,0 = c̃1(θj1,n1)hα + c̃2(θj1,n1)h
2
α + . . . + c̃α(θj1,n1)h

α
α

(8)

where nk = 2k−1(n1 + 1) − 1, jk = 2k−1j1, and

Ejk,nk,0 = λρnk
(jk)(Xnk

) − f (θj1,n1), k = 1, . . . , α.

2. For j = 1, . . . , n such that θj,n ∈ S

• For k = 1, . . . , α

– Determine α − k + 1 points θ(1), . . . , θ (α−k+1) ∈ {θ1,n1 , . . . , θn1,n1} ∩ I

which are closest to θj,n

– Compute c̃k,j (θj,n), where c̃k,j (θ) is the interpolation polynomial of
(θ(1), c̃k(θ

(1))), . . . , (θ(α−k+1), c̃k(θ
(α−k+1)))

• Compute λ̃ρn(j)(Xn) = f (θj,n) + ∑α
k=1 c̃k,j (θj,n)h

k

3. Return {λ̃ρn(j)(Xn) : θj,n ∈ S} as an approximation to {λρn(j)(Xn) : θj,n ∈ S}

Fig. 9 Example 9: graph of f (θ) = v(θ)/u(θ) = 2 − cos(θ) − cos(3θ) over (0, π)

838 Numer Algor (2019) 80:819–848

Fig. 10 Example 9: errors ε
(m)
j,n versus θj,n for θj,n ∈ I = (0, θ̂), in the case where u(θ) = 1, v(θ) =

2 − cos(θ) − cos(3θ), n = 10000, n1 = 50 · 2m−1, and α = 5

839Numer Algor (2019) 80:819–848

Fig. 11 Example 10: graph of f (θ) = v(θ)/u(θ) = 4 − cos(θ) − 2 cos(2θ) over (0, π)

Example 9 Let

u(θ) = 1,

v(θ) = 2 − cos(θ) − cos(3θ).

The graph of f (θ) = v(θ)/u(θ) = v(θ) is depicted in Fig. 9. The hypotheses of
Conjecture 2 are satisfied with either I = (0, θ̂) or I = (π − θ̂ , π), where θ̂ =
0.61547970867038... To fix the ideas, let I = (0, θ̂). Note that any permutation σn

which sorts the samples f (θ1,n), . . . , f (θn,n) in non-decreasing order is such that
σn(j) = j whenever θj,n ∈ I . As a consequence, ρn(j) = j whenever θj,n ∈ I . Set

Xn = Tn(u)−1Tn(v) = Tn(f) and let {λ̃(m)
j (Xn) : θj,n ∈ I } be the approximation

of {λj (Xn) : θj,n ∈ I } obtained for n = 10000 by applying Algorithm 2 with n1 =
50 · 2m−1, α = 5, and S = I . The graph of the errors ε

(m)
j,n = |λj (Xn) − λ̃

(m)
j (Xn)|

versus θj,n is shown in Fig. 10 for θj,n ∈ I and m = 1, 2, 3, 4. We note that the

error ε
(m)
j,n tends to increase as θj,n moves toward θ̂ , that is, as θj,n approaches to exit

the interval I over which f satisfies the assumptions of Conjecture 2. Moreover, in a
neighborhood of θ̂ , the error decreases very slowly. This phenomenon is related to the
fact that the expansion (7) does not hold in [θ̂ , π − θ̂] and, in fact, the errors Ej,n,0 =
λρn(j)(Xn) − f (θj,n) have a wild behavior inside this interval; see [13, Fig. 7].

Example 10 Let

u(θ) = 2 + cos(3θ),

v(θ) = 8 − 3 cos(θ) − 9

2
cos(2θ) + 4 cos(3θ) − 1

2
cos(4θ) − cos(5θ).

The graph of f (θ) = v(θ)/u(θ) = 4 − cos(θ) − 2 cos(2θ) is depicted
in Fig. 11. The hypotheses of Conjecture 2 are satisfied with I = (0, θ̂),
where θ̂ = 0.72273424781341... Any permutation σn which sorts the samples
f (θ1,n), . . . , f (θn,n) in non-decreasing order is such that σn(j) = j whenever
θj,n ∈ I . As a consequence, ρn(j) = j whenever θj,n ∈ I . Set Xn = Tn(u)−1Tn(v)

and let {λ̃(m)
j (Xn) : θj,n ∈ I } be the approximation of {λj (Xn) : θj,n ∈ I } obtained

for n = 5000 by applying Algorithm 2 with n1 = 25 · 2m−1, α = 5, and S = I . The
graph of the errors ε

(m)
j,n = |λj (Xn) − λ̃

(m)
j (Xn)| versus θj,n is shown in Fig. 12 for

840 Numer Algor (2019) 80:819–848

Fig. 12 Example 10: errors ε
(m)
j,n versus θj,n for θj,n ∈ I = (0, θ̂), in the case where u(θ) = 2 + cos(3θ),

v(θ) = 8−3 cos(θ)− 9
2 cos(2θ)+4 cos(3θ)− 1

2 cos(4θ)−cos(5θ), n = 5000, n1 = 25 ·2m−1, and α = 5

θj,n ∈ I and m = 1, 2, 3, 4. Considerations analogous to those in Example 10 apply
also in this case.

841Numer Algor (2019) 80:819–848

5 Conclusions and perspectives

We have proposed and analyzed a matrix-less parallel interpolation–extrapolation
algorithm for computing the eigenvalues of preconditioned banded symmetric
Toeplitz matrices of the form Tn(u)−1Tn(v), where u, v are RCTPs, u > 0 on (0, π),
and f = v/u is monotone on (0, π). We have illustrated the performance of the algo-
rithm through numerical experiments, and we have presented its generalization to
the case where f = v/u is non-monotone. We conclude by suggesting two possible
future lines of research:

• Algorithm 1, as well as its generalized version for the non-monotone case (Algo-
rithm 2), is based on a local interpolation strategy, as described in Section 2.1.
An interesting topic for future research could be the following: try another kind
of approximation (for example, an higher-order spline approximation) to see
whether this reduces the errors and accelerates the convergence of both these
algorithms.

• Understand whether an asymptotic eigenvalue expansion analogous to (7) holds
without the hypothesis that f restricted to some interval I ⊆ (0, π) is monotone
and satisfies f −1(f (I)) = I . Such a result would eliminate any limitation in
the applicability of Algorithm 2 (provided that the latter is properly modified
according to the new expansion).

Funding Information The research of Sven-Erik Ekström is cofinanced by the Graduate School in
Mathematics and Computing (FMB) and Uppsala University. Carlo Garoni is a Marie-Curie fellow of
the Italian INdAM (Istituto Nazionale di Alta Matematica) under grant agreement PCOFUND-GA-2012-
600198.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A

This appendix collects the proofs of Theorems 1 and 2.

Proof of Theorem 1 We follow the argument in [1, Section 2]. Equations (2) and (4)
can be rewritten as

A(h1, . . . , h1)c(j1) = E0(j1) − Eα(j1) (9)

A(h1, . . . , h1)c̃(j1) = E0(j1), (10)

842 Numer Algor (2019) 80:819–848

http://creativecommons.org/licenses/by/4.0/

where

c(j1) =
⎡

⎢
⎣

c1(θj1,n1)
...

cα(θj1,n1)

⎤

⎥
⎦ , c̃(j1) =

⎡

⎢
⎣

c̃1(θj1,n1)
...

c̃α(θj1,n1)

⎤

⎥
⎦ ,

E0(j1) =
⎡

⎢
⎣

Ej1,n1,0
...

Ejα,nα,0

⎤

⎥
⎦ , Eα(j1) =

⎡

⎢
⎣

Ej1,n1,α

...

Ejα,nα,α

⎤

⎥
⎦ , (11)

and

A(h1, . . . , hα) = diag(h1, . . . , hα) V (h1, . . . , hα), (12)

with V (h1, . . . , hα) being the Vandermonde matrix associated with the nodes
h1, . . . , hα ,

V (h1, . . . , hα) =

⎡

⎢⎢⎢
⎣

1 h1 h2
1 · · · hα−1

1
1 h2 h2

2 · · · hα−1
2

...
...

...
...

1 hα h2
α · · · hα−1

α

⎤

⎥⎥⎥
⎦

.

By (9), (10), and (12), we have

c̃(j1) − c(j1) = A(h1, . . . , hα)−1Eα(j1) = V (h1, . . . , hα)−1Fα(j1),

where

Fα(j1) = diag(h1, . . . , hα)−1Eα(j1) =
⎡

⎢
⎣

Ej1,n1,α/h1
...

Ejα,nα,α/hα

⎤

⎥
⎦ .

Note that, by (3),

|(Fα(j1))k| = |Ejk,nk,α/hk| ≤ Cαhα
k , k = 1, . . . , α. (13)

The inverse of V (h1, . . . , hα) is explicitly given by

(V (h1, . . . , hα)−1)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)α−i

∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i �=j

hk1 · · · hkα−i

∏

1≤k≤α
k �=j

(hj − hk)
, 1 ≤ i < α,

1
∏

1≤k≤α
k �=j

(hj − hk)
, i = α.

(14)

843Numer Algor (2019) 80:819–848

Taking into account (13) and the equation hk = 21−kh1 for k = 1, . . . , α, we obtain
the following:

• For i = α,

|c̃α(θj1,n1) − cα(θj1,n1)| = |(c̃(j1) − c(j1))α|

=
∣∣∣∣∣∣

α∑

j=1

(V (h1, . . . , hα)−1)αj (Fα(j1))j

∣∣∣∣∣∣

≤
α∑

j=1

|(Fα(j1))j |∏

1≤k≤α
k �=j

|hj − hk|
≤

α∑

j=1

Cαhα
j

hα−1
j

∏

1≤k≤α
k �=j

|1 − hk/hj |

= Cαh1

α∑

j=1

21−j

∏

1≤k≤α
k �=j

|1 − 2j−k|
= A(α)h1,

with A(α) depending only on α, u, v just like Cα .
• For 1 ≤ i < α,

|c̃i (θj1,n1) − ci(θj1,n1)| = |(c̃(j1) − c(j1))i |

=
∣∣∣∣∣∣

α∑

j=1

(V (h1, . . . , hα)−1)ij (Fα(j1))j

∣∣∣∣∣∣

≤
α∑

j=1

|(Fα(j1))j |
∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i �=j

hk1 · · · hkα−i

∏

1≤k≤α
k �=j

|hj − hk|

≤
α∑

j=1

Cαhα
j

∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i �=j

hk1 · · · hkα−i

hα−1
j

∏

1≤k≤α
k �=j

|1 − hk/hj |

= Cαhα−i+1
1

α∑

j=1

21−j
∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i �=j

21−k1 · · · 21−kα−i

∏

1≤k≤α
k �=j

|1 − 2j−k|

= A(α, i)hα−i+1
1 ,

with A(α, i) depending only on α, i, u, v.

844 Numer Algor (2019) 80:819–848

In conclusion, Theorem 1 is proved with Aα = maxi=1,...,α A(α, i), where A(α, α) =
A(α).

Proof of Theorem 2 Let L1, . . . , Lα−k+1 be the Lagrange polynomials associated
with the nodes θ(1), . . . , θ (α−k+1),

Lr(θ) =
α−k+1∏

s=1
s �=r

θ − θ(s)

θ (r) − θ(s)
, r = 1, . . . , α − k + 1.

The interpolation polynomial of the data (θ(1), c̃k(θ
(1))), . . . , (θ(α−k+1), c̃k(θ

(α−k+1)))

is

c̃k,j (θ) =
α−k+1∑

r=1

c̃k(θ
(r))Lr(θ)

and the interpolation polynomial of the data (θ(1), ck(θ
(1))), . . . , (θ(α−k+1),

ck(θ
(α−k+1))) is

p(θ) =
α−k+1∑

r=1

ck(θ
(r))Lr(θ).

Considering that θ(1), . . . , θ (α−k+1) are α − k + 1 points from {θ1,n1 , . . . , θn1,n1}
which are closest to θj,n, the length of the smallest interval I containing the nodes
θ(1), . . . , θ (α−k+1) and the point θj,n is bounded by (α − k + 1)πh1. Hence, by
Theorem 1, for all θ ∈ I we have

|c̃k,j (θ) − p(θ)| ≤
α−k+1∑

r=1

|c̃k,j (θ
(r)) − ck(θ

(r))|
α−k+1∏

s=1
s �=r

|θ − θ(s)|
|θ(r) − θ(s)|

≤
α−k+1∑

r=1

Aαhα−k+1
1

α−k+1∏

s=1
s �=r

(α − k + 1)πh1

πh1

= Aαhα−k+1
1 (α − k + 1)α−k+1. (15)

Since ck ∈ Cα−k+1([0, π]) by assumption, from interpolation theory we know that
for every θ ∈ I there exists ξ(θ) ∈ I such that

ck(θ) − p(θ) = c
(α−k+1)
k (ξ(θ))

(α − k + 1)!
α−k+1∏

r=1

(θ − θ(r));

845Numer Algor (2019) 80:819–848

see, e.g., [12, Theorem 3.1.1]. Thus, for all θ ∈ I , we have

|ck(θ) − p(θ)| ≤ |c(α−k+1)
k (ξ(θ))|
(α − k + 1)!

α−k+1∏

r=1

|θ − θ(r)|

≤ ‖c(α−k+1)
k ‖∞

(α − k + 1)!
α−k+1∏

r=1

(α − k + 1)πh1

= (α − k + 1)α−k+1πα−k+1‖c(α−k+1)
k ‖∞

(α − k + 1)! hα−k+1
1 . (16)

From (15) and (16) we obtain

|ck(θ) − c̃k,j (θ)| ≤ B(k, α)hα−k+1
1 ≤ Bαhα−k+1

1 , θ ∈ I, (17)

where

B(k, α) = (α − k + 1)α−k+1πα−k+1‖c(α−k+1)
k ‖∞

(α − k + 1)! + Aα(α − k + 1)α−k+1

and Bα = maxi=1,...,α B(i, α). Since θj,n ∈ I , it is clear that (6) follows from (17).

Appendix B

This appendix provides a plain MATLAB implementation of Algorithm 1.

function lambdaS = eigs_preconditioned_toeplitz(n,cu,cv,n1,alpha,S)
% INPUT
% n: positive integer (size of X_n = T_n(u)ˆ(-1) * T_n(v))
% cu: row vector of the coefficients of the trigonometric polynomial
% u(t) = cu(1)+2*cu(2)*cos(t)+...+2*cu(end)*cos((end-1)*t)
% cv: row vector of the coefficients of the trigonometric polynomial
% v(t) = cv(1)+2*cv(2)*cos(t)+...+2*cv(end)*cos((end-1)*t)
% n1: positive integer (number of points of the coarsest grid
% theta_{j1,n1} = j1*pi/(n1+1), j1=1,...,n1)
% alpha: positive integer (number of coefficients c_k(theta)
% to be approximated on the coarsest grid by the tilde c_k(theta))
% S: row vector containing the indices corresponding to the
% eigenvalues of X_n to be computed; the indices should be sorted
% in increasing order, and it is understood that the eigenvalues
% of X_n are sorted in increasing order as well
% OUTPUT
% lambdaS: row vector of length length(S) containing the approximations
% of the eigenvalues of X_n corresponding to the indices S
% computed by using Algorithm 1 with n1 and alpha as inputs
% FURTHER SPECIFICATIONS
% This Matlab function works under the same assumptions as in this paper,
% i.e., u(t), v(t), f(t)=v(t)/u(t) should be as in Conjecture 1 and n1
% should be greater or equal to alpha
% EXAMPLE (CORRESPONDING TO EXAMPLE 8 OF THIS PAPER)
% n = 5000; cu = [8, -1.5, -2, -0.5]; cv = [17.5, -6, -3, 0, 0.25];
% n1 = 100; alpha = 4; S = 1:5;
% lambdaS = eigs_preconditioned_toeplitz(n,cu,cv,n1,alpha,S)

lu = length(cu); lv = length(cv);

846 Numer Algor (2019) 80:819–848

u = @(t)cu(1)+sum(2*cu(2:lu).*cos((1:lu-1)*t));
v = @(t)cv(1)+sum(2*cv(2:lv).*cos((1:lv-1)*t));
f = @(t) arrayfun(@(t)v(t)./u(t),t);

nn = zeros(1,alpha); hh = zeros(1,alpha);
for k = 1:alpha

nn(k) = 2ˆ(k-1)*(n1+1)-1;
hh(k) = 1/(nn(k)+1);

end

A = zeros(alpha);
for i = 1:alpha

for j = 1:alpha
A(i,j) = hh(i)ˆj;

end
end

E = zeros(alpha,n1);
j1 = 1:n1;
theta = j1*pi*hh(1);
TTu = toeplitz([cu, sparse(1, nn(alpha) - lu)]);
TTv = toeplitz([cv, sparse(1, nn(alpha) - lv)]);
for k = 1:alpha

eigX = sort(eig(full(TTv(1:nn(k),1:nn(k))),full(TTu(1:nn(k),1:nn(k)))));
jk = 2ˆ(k-1)*j1;
E(k,:) = eigX(jk)’ - f(theta);

end

c_tilde = A\E;

lS = length(S);
lambdaS = zeros(1,lS);
h = 1/(n+1);
t = S*pi*h;
for j = 1:lS

ell = t(j)*(n1+1)/pi;
poly_evals = zeros(1,alpha);
for k = 1:alpha

indices = localization(ell,alpha-k+1);
if indices(1)<1

indices = indices - indices(1) + 1;
end
if indices(end)>n1

indices = indices - indices(end) + n1;
end
tt = indices*pi*hh(1);
poly_evals(k) = polyval(polyfit(tt,c_tilde(k,indices),alpha-k),t(j));

end
lambdaS(j) = polyval([poly_evals(end:-1:1) f(t(j))],h);

end

end

function u = localization(x,m)

% INPUT
% x: real number
% m: natural number >= 1
% OUTPUT
% u: row vector of length m such that u(1),...,u(m) are m integers
% that are closest to x (which are not uniquely determined
% in some cases)

847Numer Algor (2019) 80:819–848

b = mod(m,2);
v = (m + b)/2;
fx = floor(x);
cx = ceil(x);

if x - fx <= cx - x
u = (fx - v + 1):(fx + v - b);

else
u = (cx - v + b):(cx + v - 1);

end

end

References

1. Ahmad, F., Al-Aidarous, E.S., Alrehaili, D.A., Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Are the
eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?
Numer. Alg. (in press). https://doi.org/10.1007/s11075-017-0404-z

2. Arbenz, P.: Computing the eigenvalues of banded symmetric Toeplitz matrices. SIAM J. Sci. Stat.
Comput. 12, 743–754 (1991)

3. Badı́a, J.M., Vidal, A.M.: Parallel algorithms to compute the eigenvalues and eigenvectors of
symmetric Toeplitz matrices. Parallel Algorithms Appl. 13, 75–93 (2000)

4. Bini, D., Di Benedetto, F.: Solving the generalized eigenvalue problem for rational Toeplitz matrices.
SIAM J. Matrix Anal. Appl. 11, 537–552 (1990)

5. Bini, D., Pan, V.: Efficient algorithms for the evaluation of the eigenvalues of (block) banded Toeplitz
matrices. Math. Comput. 50, 431–448 (1988)

6. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz
matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422, 1308–1334 (2015)

7. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Maximum norm versions of the Szegő
and Avram–Parter theorems for Toeplitz matrices. J. Approx. Theory 196, 79–100 (2015)

8. Bogoya, J.M., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices gen-
erated by simple-loop symbols with relaxed smoothness. Oper. Theory Adv. Appl. 259, 179–212
(2017)

9. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York
(1999)

10. Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Inside the eigenvalues of certain Hermitian Toeplitz
band matrices. J. Comput. Appl. Math. 233, 2245–2264 (2010)

11. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods: Theory and Practice. North-Holland,
Elsevier Science Publishers B.V., Amsterdam (1991)

12. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)
13. Ekström, S.-E., Garoni, C., Serra-Capizzano, S.: Are the eigenvalues of banded symmetric Toeplitz

matrices known in almost closed form? Exper. Math. (in press). https://doi.org/10.1080/10586458.
2017.1320241

14. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications,
vol. I. Springer, Cham (2017)

15. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2010)
16. Trench, W.F.: On the eigenvalue problem for Toeplitz band matrices. Linear Algebra Appl. 64, 199–

214 (1985)
17. Trench, W.F.: Characteristic polynomials of symmetric rationally generated Toeplitz matrices. Linear

Multilinear Algebra 21, 289–296 (1987)
18. Trench, W.F.: Numerical solution of the eigenvalue problem for symmetric rationally generated

Toeplitz matrices. SIAM J. Matrix Anal. Appl. 9, 291–303 (1988)
19. Trench, W.F.: Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices. SIAM

J. Matrix Anal. Appl. 10, 135–146 (1989)
20. Trench, W.F.: Numerical solution of the eigenvalue problem for efficiently structured Hermitian

matrices. Linear Algebra Appl. 154–156, 415–432 (1991)

848 Numer Algor (2019) 80:819–848

https://doi.org/10.1007/s11075-017-0404-z
https://doi.org/10.1080/10586458.2017.1320241
https://doi.org/10.1080/10586458.2017.1320241

	A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices
	Abstract
	Introduction
	The algorithm
	Description and formulation of the algorithm
	Extrapolation
	Interpolation
	Formulation of the algorithm

	Error estimate

	Numerical experiments
	Generalization to the non-monotone case
	Conclusions and perspectives
	Funding Information
	Open Access
	Appendix A
	
	Appendix B
	References

