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Are the eigenvalues of preconditioned banded
symmetric Toeplitz matrices known in almost closed
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Abstract Bogoya, Böttcher, Grudsky, and Maximenko have recently obtained the
precise asymptotic expansion for the eigenvalues of a sequence of Toeplitz matri-
ces {Tn(f )}, under suitable assumptions on the associated generating function f . In
this paper, we provide numerical evidence that some of these assumptions can be
relaxed and extended to the case of a sequence of preconditioned Toeplitz matrices
{T −1

n (g)Tn(f )}, for f trigonometric polynomial, g nonnegative, not identically zero
trigonometric polynomial, r = f/g, and where the ratio r plays the same role as f
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in the nonpreconditioned case. Moreover, based on the eigenvalue asymptotics, we
devise an extrapolation algorithm for computing the eigenvalues of preconditioned
banded symmetric Toeplitz matrices with a high level of accuracy, with a relatively
low computational cost, and with potential application to the computation of the
spectrum of differential operators.

Keywords (Preconditioned) Toeplitz matrix · Mass and stiffness matrix ·
Eigenvalues · Eigenvalue asymptotics · Polynomial interpolation · Extrapolation

Mathematics Subject Classifications (2010) 15B05 · 65F15 · 65D05 · 65B05

1 Introduction

A matrix of size n, having a fixed entry along each diagonal, is called Toeplitz and
enjoys the expression

[
ai−j

]n
i,j=1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2
...

. . .
. . .

. . . a−1
an−1 · · · · · · a2 a1 a0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Given a complex-valued Lebesgue integrable function φ : [−π, π ] → C, the nth
Toeplitz matrix generated by φ is defined as

Tn(φ) = [
φ̂i−j

]n
i,j=1,

where the quantities φ̂k are the Fourier coefficients of φ, which means

φ̂k = 1

2π

∫ π

−π

φ(θ) e−ikθdθ, k ∈ Z.

We refer to {Tn(φ)}n as the Toeplitz sequence generated by φ, which in turn is called
the generating function of {Tn(φ)}n. In the case where φ is real-valued, all the matri-
ces Tn(φ) are Hermitian and much is known about their spectral properties, from
the localization of the eigenvalues to the asymptotic spectral distribution in the Weyl
sense: in particular φ is the spectral symbol of {Tn(φ)}n, see [7, 14] and the references
therein.

More in detail, if φ is real-valued and not identically constant, then any eigenvalue
of Tn(φ) belongs to the open set (mφ, Mφ), withmφ ,Mφ being the essential infimum,
the essential supremum of φ, respectively. The case of a constant φ is trivial: in that
case if φ = m almost everywhere then Tn(φ) = mIn with In denoting the identity
of size n. Hence if Mφ > 0 and φ is nonnegative almost everywhere, then Tn(φ) is
Hermitian positive definite.

In this paper, we focus our attention on the following setting.
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• We consider two real-valued cosine trigonometric polynomials (RCTPs) f, g,
that is

f (θ) = f̂0 + 2
m1∑

k=1

f̂k cos(kθ), f̂0, f̂1, . . . , f̂m1 ∈ R, m1 ∈ N,

g(θ) = ĝ0 + 2
m2∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝm2 ∈ R, m2 ∈ N,

so that Tn(f ), Tn(g) are both real symmetric.
• We assume that Mg = max g > 0 and mg = min g ≥ 0, so that Tn(g) is positive

definite.
• We consider Pn(f, g) = T −1

n (g)Tn(f ) the “preconditioned” matrix and we
define the new symbol r = f/g.

The nth Toeplitz matrix generated by φ ∈ {f, g} is the real symmetric banded
matrix of bandwidth 2m + 1, m ∈ {m1, m2} (m = m1 if φ = f and m = m2 if
φ = g), given by

Tn(φ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

φ̂0 φ̂1 · · · φ̂m

φ̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

φ̂m

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ̂m · · · φ̂1 φ̂0 φ̂1 · · · φ̂m

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . φ̂m

. . .
. . .

. . .
. . .

...

. . .
. . .

. . . φ̂1

φ̂m · · · φ̂1 φ̂0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Matrices of the form Pn(f, g) are important for the fast solution of large Toeplitz
linear systems (in connection with the preconditioned conjugate gradient method [9–
11, 18] or of more general preconditioned Krylov methods [15, 16]). Furthermore,
up to low rank corrections, they appear in the context of the spectral approximation
of differential operators in which a low rank correction of Tn(g) is the mass matrix
and a low rank correction of Tn(f ) is the stiffness matrix.

Their spectral features have been studied in detail. More precisely, under the
assumption that r = m identically Pn(f, g) = rIn, while if mr < Mr , then any
eigenvalue of Pn(f, g) belongs to the open set (mr, Mr), see [11], and the whole
sequence {Pn(f, g)}n is spectrally distributed in the Weyl sense as r = f/g (see
[19]).
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In our context, we say that a function is monotone if it is either increasing or
decreasing over the interval [0, π ].

Under the assumption that r = f/g is monotone, in this paper, we show experi-
mentally that for every integer α ≥ 0, every n and every j = 1, . . . , n, the following
asymptotic expansion holds:

λj (Pn(f, g)) = r(θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (1)

where:

• the eigenvalues of Pn(f, g) are arranged in nondecreasing or nonincreasing
order, depending on whether r is increasing or decreasing;

• {ck}k=1,2,... is a sequence of functions from [0, π ] to R which depends only on r;
• h = 1

n+1 and θj,n = jπ
n+1 = jπh;

• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality
|Ej,n,α| ≤ Cαhα+1 for some constant Cα depending only on α and r .

In the pure Toeplitz case, that is for g = 1 identically, so that Pn(f, g) = Tn(f )

and r = f , the result is proven in [4–6], if the RCTP f is monotone and satisfies
certain additional assumptions, which include the requirements that f ′(θ) �= 0 for
θ ∈ (0, π) and f ′′(θ) �= 0 for θ ∈ {0, π}. The symbols

fq(θ) = (2 − 2 cos θ)q, q = 1, 2, . . . , (2)

arise in the discretization of differential equations and are therefore of particular
interest. Unfortunately, for these symbols, the requirement that f ′′(0) �= 0 is not sat-
isfied if q ≥ 2. In [13], several numerical evidences are reported, showing that the
higher order approximation (1) holds even in this “degenerate case.”

Here, as first purpose, we show numerically the same for the preconditioned
matrices Pn(f, g) and, from a theoretical point of view, the numerical testing is
complemented by the proof of the above conjecture in the basic case of α = 0.

Furthermore, in [13], the authors employed the asymptotic expansion (1) for com-
puting an accurate approximation of λj (Tn(f )) for very large n, provided that the
values λj1(Tn1(f )), . . . , λjs (Tns (f )) are available for moderate sizes n1, . . . , ns with
θj1,n1 = · · · = θjs ,ns = θj,n, s ≥ 2. The second and main purpose of this paper is
to carry out this idea and to support it by numerical experiments, accompanied by
an appropriate error analysis in the more general case of the preconditioned matri-
ces Pn(f, g). In particular, we devise an algorithm to compute λj (Pn(f, g)) with
a high level of accuracy and a relatively low computational cost. The algorithm is
completely analogous to the extrapolation procedure, which is employed in the con-
text of Romberg integration (to obtain high precision approximations of an integral
from a few coarse trapezoidal approximations [20, Section 3.4], see also [8] for more
advanced algorithms). In this regard, the asymptotic expansion (1) plays here the
same role as the Euler–Maclaurin summation formula [20, Section 3.3].

The third and last purpose of this paper is to formulate, on the basis of numerical
experiments, a conjecture on the higher-order asymptotic of the eigenvalues if the
monotonicity assumption on r = f/g is not in force. We also illustrate how this
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conjecture can be used along with our extrapolation algorithm in order to compute
some of the eigenvalues of Pn(f, g) in the case where r is nonmonotone.

2 Error bounds for the coefficients ck in the asymptotic expansion

We start this section by manipulating the error expression implicitly given in (1),
the goal being that of using extrapolation methods [8]. In fact, if we assume that the
relations in (1) hold, then we can write

Ej,n,0 =
α∑

k=1

ck(θj,n) hk + Ej,n,α , (3)

where Ej,n,0 = λj (Pn(f, g)) − r(θj,n).
We now suppose to know the eigenvalues for different (small) ni

namely {(n1, λj1(Pn1(f, g))), (n2, λj2(Pn2(f, g))), · · · , (nα, λjα (Pnα (f, g)))},
where n1, n2, · · · , nα and j1, j2, · · · , jα are chosen in such a way that
j1/(n1 + 1) = j2/(n2 + 1) = · · · = jα/(nα + 1).

By defining h1 = 1/(n1 + 1), h2 = 1/(n2 + 1), . . . , hα = 1/(nα + 1), for a given
set of eigenvalues, (3) can be written as

Ej1,n1,0 =
α∑

k=1
ck(θj1,n1) hk

1 + Ej1,n1,α,

Ej2,n2,0 =
α∑

k=1
ck(θj2,n2) hk

2 + Ej2,n2,α,

Ej3,n3,0 =
α∑

k=1
ck(θj3,n3) hk

3 + Ej3,n3,α,

...

Ejα,nα,0 =
α∑

k=1
ck(θjα,nα ) hk

α + Ejα,nα,α.

(4)

Let c, c̃ be the vectors

c = [c1, c2, . . . , cα]T ; c̃ = [c̃1, c̃2, . . . , c̃α]T ,

and let A be the coefficient matrix of size α × α with (A)i,j = h
j
i . Hence, the set of

(4) can be written in matrix form as

Ac = b0 − bα , (5)

where b0 = [Ej1,n1,0, Ej2,n2,0, . . . , Ejα,nα,0]T and bα =
[Ej1,n1,α, Ej2,n2,α, . . . , Ejα,nα,α]T . Furthermore, by neglecting the higher order
errors, we may define an approximation c̃ of c according to the expression below

Ac̃ = b0 . (6)

By solving the linear system of equations above, the approximation of c is easily
obtained since the matrix size is very small. In a subsequent step, we derive upper-
bounds for |c̃ − c|: in reality, (5) and (6) leads to

A(c̃ − c) = bα. (7)
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If we define �c = c̃ − c and ηi = Eji ,ni ,α

hα+1
i

for i = 1, . . . , α, then the system (7) can

be written as

A�c =

⎡

⎢⎢⎢
⎣

η1h
α+1
1

η2h
α+1
2
...

ηαhα+1
α

⎤

⎥⎥⎥
⎦

, (8)

with |ηi | ≤ Cα for i = 1, . . . , α, where Cα is a constant. The coefficient matrix can
be expressed as

A =

⎡

⎢⎢⎢
⎣

h1 h21 . . . hα
1

h2 h22 . . . hα
2

...
...

...

hα h2α . . . hα
α

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

h1
h2

. . .

hα

⎤

⎥⎥⎥
⎦

V (h1, . . . , hα),

where V (h1, . . . , hα) is the Vandermonde matrix of order α corresponding to
h1, . . . , hα .
By assuming W = V −1(h1, . . . , hα), we deduce

(W)i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)α−i

⎛

⎜⎜⎜⎜⎜
⎝

∑

1≤ k1 <... < kα−i ≤α
k1,...,kα−i �=j

hk1 · · · hkα−i

∏

1≤ k ≤ α
k �=j

(
hj − hk

)

⎞

⎟⎟⎟⎟⎟
⎠

1 ≤ i < α,

1
∏

1≤ k ≤α
k �=j

(
hj − hk

) i = α.

(9)

Therefore for the inversion of the matrix A, we have

(A−1)i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)α−i

⎛

⎜⎜⎜⎜⎜
⎝

∑

1≤ k1 <... < kα−i ≤α
k1,...,kα−i �=j

hk1 · · · hkα−i

hj

∏

1≤ k ≤ α
k �=j

(
hj − hk

)

⎞

⎟⎟⎟⎟⎟
⎠

1 ≤ i < α,

1

hj

∏

1≤ k ≤α
k �=j

(
hj − hk

) i = α,

(10)

and we can obtain an explicit expression for (�c)i , i = 1, . . . , α, that is

(�c)i =
α∑

j=1

(A−1)i,j ηjh
α+1
j . (11)



Numer Algor (2018) 78:867–893 873

Case 1 If i = α, then

(�c)α =
α∑

j=1

ηjh
α+1
j

hj

∏

1≤ k ≤α
k �=j

(
hj − hk

) .

Whence, from the fact that |ηi | ≤ Cα for i = 1, . . . , α,

|(�c)α| ≤
α∑

j=1

|ηj |hα+1
j

hj

∏

1≤ k ≤ α
k �=j

|hj − hk|
≤

α∑

j=1

Cαhα
j∏

1≤ k ≤α
k �=j

|hj − hk|
.

With the choice hj = 1
mj−1 h1 for j = 1, . . . , α, m positive integer, we have

|(�c)α | ≤ Cα

∑α
j=1

(
h1

mj−1 )α

∏

1≤ k ≤ α
k �=j

h1

∣∣∣∣
1

mj−1
− 1

mk−1

∣∣∣∣

= Cαhα
1

∑α
j=1

( 1
mj−1 )α

hα−1
1

∏

1≤ k ≤ α
k �=j

∣∣∣∣
1

mj−1
− 1

mk−1

∣∣∣∣

= h1Cα

∑α
j=1

( 1
mj−1 )α

∏

1≤ k ≤ α
k �=j

∣∣∣∣
1

mj−1
− 1

mk−1

∣∣∣∣

= O(h1).

Case 2 If i = 1, . . . , α − 1, then

(�c)i =
α∑

j=1

(−1)α−iηjh
α+1
j

∑

1≤ k1 <... < kα−i ≤α
k1,...,kα−i �=j

hk1 · · · hkα−i

hj

∏

1≤ k ≤ α
k �=j

(
hj − hk

) ,

that is different from the case i = α just for the numerator

∑

1≤ k1 <... < kα−i ≤ α
k1,...,kα−i �=j

hk1 · · · hkα−i
.

As a consequence,

|(�c)i | ≤ Cα

α∑

j=1

hα
j

∑

1≤ k1 <... < kα−i ≤α
k1,...,kα−i �=j

hk1 · · · hkα−i

∏

1≤ k ≤α
k �=j

∣∣hj − hk

∣∣
.
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With the choice hj = 1
mj−1 h1 for j = 1, . . . , α, we infer

|(�c)i | ≤ Cα

∑α
j=1

(
h1

mj−1

)α

∑

1≤ k1 <... < kα−i ≤ α
k1,...,kα−i �=j

hα−i
1

(
1

mk1−1

1

mk2−1
. . .

1

mkα−i−1

)

∏

1≤ k ≤ α
k �=j

h1

∣∣∣∣
1

mj−1
− 1

mk−1

∣∣∣∣

= Cα

∑α
j=1

(
1

mj−1

)α
(

hα
1hα−i

1

hα−1
1

)

∑

1≤ k1 <... < kα−i ≤ α
k1,...,kα−i �=j

(
1

mk1−1

1

mk2−1
. . .

1

mkα−i−1

)

∏

1≤ k ≤ α
k �=j

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

=hα−i+1
1 Cα

∑α
j=1

(
1

mj−1

)α

∑

1≤ k1 <...< kα−i ≤ α
k1,...,kα−i �=j

(
1

mk1−1

1

mk2−1
. . .

1

mkα−i−1

)

∏

1≤ k ≤ α
k �=j

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

=O(hα−i+1
1 ).

As a conclusion, with the choice hj = 1
mj−1 h1 for j = 1, . . . , α and under the

assumption that the asymptotic expansion reported in (1) is true, we deduce

|(�c)i | = O(hα−i+1
1 ), (12)

for i = 1, . . . , α.

3 Error bounds for numerically approximated eigenvalues

The goal of this short section is to provide error bounds based on the linear system in
(6) for the computation of the eigenvalues of Pn(f, g): of course, these error bounds
are based on the conjecture that the relations reported in (1) are true. However, as we
can see in Section 4, the numerical tests fully support the existence of the considered
asymptotic expansion.

Indeed, as already observed, by solving (6), we can approximate ck . Once we have
the values of ck , we can approximate the eigenvalues λjβ of a large dimension matrix
of size nβ , here nβ +1 = mβ−1(n1+1). The asymptotic expansion (3) can be written
as

Ejβ,nβ ,0 = h̄T
β c + Ejβ,nβ,α . (13)

By subtraction h̄T
β c̃ from both sides of the equation above, we find

Ejβ,nβ ,0 − h̄T
β c̃ = h̄T

β (c − c̃) + Ejβ,nβ ,α,

λj (Pnβ (f, g)) − r(θj,nβ ) − h̄T
β c̃ = h̄T

β �c + Ejβ,nβ ,α,
∣∣∣λj (Pnβ (f, g)) − r(θj,nβ ) − h̄T

β c̃

∣∣∣ ≤
α∑

i=1
hi

β |(�c)i | + |Ejβ,nβ,α|,
∣∣∣λj (Pnβ (f, g)) − r(θj,nβ ) − h̄T

β c̃

∣∣∣ ≤
α∑

i=1
hi

β |(�c)i | + Cαhα+1
β ,

(14)
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where h̄β = [hβ, h2β, · · · , hα
β ]T , |Ejβ,nβ ,α| ≤ Cαhα+1

β for some constant Cα and
|(�c)i | is given in (12).

4 Numerical tests

In this section, we want to present a few numerical experiments to support the asymp-
totic expansion (1) in the case where one or more properties of the following list are
satisfied:

1. f ′′(0) �= 0 (see Example 1, Example 3, and Example 5),
2. f ′′(0) = 0 (see Example 2 and Example 4),
3. min g > 0 (see Example 1, Example 2, and Example 5),
4. min g = 0 (see Example 3 and Example 4),
5. r = f/g is non monotone (see Example 5).

The approximation of eigenvalues of large matrices in each case is also computed.
The expansion (1) for α = 4 is

λj (Pn(f, g)) = r(θj,n)+c1(θj,n) h+c2(θj,n) h2+c3(θj,n) h3+c4(θj,n) h4+Ej,n,4,

Ej,n,0 = λj (Pn(f, g)) − r(θj,n) = c1(θj,n) h + c2(θj,n) h2 + c3(θj,n) h3

+c4(θj,n) h4 + Ej,n,4 . (15)

In all numerical examples, we choose four matrix-size values, that is ni for i ∈
{1, 2, 3, 4}, in a way that they satisfy ni = mi−1(n1 + 1)− 1, with m being a positive
integer. The expansion (15) for the set of the four dimensions ni can be written as

Ej1,n1,0 = c1(θj1,n1) h1 + c2(θj1,n1) h21 + c3(θj1,n1) h31 + c4(θj1,n1) h41 + Ej1,n1,4,

Ej2,n2,0 = c1(θj2,n2) h2 + c2(θj2,n2) h22 + c3(θj2,n2) h32 + c4(θj2,n2) h42 + Ej2,n2,4,

Ej3,n3,0 = c1(θj3,n3) h3 + c2(θj3,n3) h23 + c3(θj3,n3) h33 + c4(θj3,n3) h43 + Ej3,n3,4,

Ej4,n4,0 = c1(θj4,n4) h4 + c2(θj4,n4) h24 + c3(θj4,n4) h34 + c4(θj4,n4) h44 + Ej4,n4,4,

(16)
where hi = 1

ni+1 and ji = mi−1 j1 for i ∈ {1, 2, 3, 4}. Notice that θji ,ni
= θj1,n1 = θ̄

for a fixed j1 ∈ {1, 2, · · · , n1}. We are interested in the numerical approximation
of ci(θ̄ ) for i ∈ {1, 2, 3, 4} and then in the precise numerical approximation of the
eigenvalue of Pn(f, g) for large n. The set of (16) can be written as

Ej1,n1,0 = c̃1(θ̄) h1 + c̃2(θ̄ ) h21 + c̃3(θ̄ ) h31 + c̃4(θ̄ ) h41,

Ej2,n2,0 = c̃1(θ̄) h2 + c̃2(θ̄ ) h22 + c̃3(θ̄ ) h32 + c̃4(θ̄ ) h42,

Ej3,n3,0 = c̃1(θ̄) h3 + c̃2(θ̄ ) h23 + c̃3(θ̄ ) h33 + c̃4(θ̄ ) h43,

Ej4,n4,0 = c̃1(θ̄) h4 + c̃2(θ̄) h24 + c̃3(θ̄ ) h34 + c̃4(θ̄ ) h44.

(17)

We solve the system of linear equations above for j1 ∈ {1, 2, · · · , n1} to compute
c̃i (θ̄ ). The computed c̃i are used to approximate the eigenvalues of large size nβ by
exploiting the following relation

λ̃jβ (Pnβ (f, g)) = r(θjβ ,nβ ) + h̄T
β c̃ . (18)



876 Numer Algor (2018) 78:867–893

Example 1 Let g, f , and r be the functions defined as

f (θ) = 4 − 2 cos(θ) − 2 cos(2θ) = (2 − 2 cos(θ))(3 + 2 cos(θ)) ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= 2 − 2 cos(θ) ,

where θ ∈ [0, π ]. The graphs of generating functions are shown in left panel of
Fig. 1, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Note that g(θ) > 0, ∀ θ ∈ [0, π ], f ′′(0) �= 0, and furthermore r is monotone. We set
n = n1 ∈ {40, 60, 80, 100} and m = 2.

Example 2 Let g, f , and r be the functions defined as

f (θ) = 20 − 30 cos(θ) + 12 cos(2θ) − 2 cos(3θ) = (2 − 2 cos(θ))3 ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= (2 − 2 cos(θ))3

3 + 2 cos(θ)
,

where θ ∈ [0, π ]. The graphs of generating functions are shown in left panel of
Fig. 2, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Remark that g(θ) > 0, ∀ θ ∈ [0, π ], f ′′(0) = 0, and furthermore r is monotone. We
set n = n1 ∈ {40, 60, 80, 100} and m = 2.

There is an important issue to discuss here. Both the functions f and r attain
the minimum at θ = 0 with a very high order. Indeed, we have f (θ), r(θ) ≈ θ6,
with φ1 ≈ φ2 being the symmetric, transitive relation telling that there exist positive
constants c, C > 0 such that cφ1 ≤ φ2 ≤ Cφ1 on the whole definition domain [0, π ].
Therefore for fixed j (independent of n) the j th smallest eigenvalue of Pn(f, g) is
asymptotic to kjh

6, kj positive constant depending on j but not on n: the reader is
refereed to [17] for the preconditioned case with the limitation j = 1 and to [1] and
references therein for very elegant and precise estimates regarding the pure Toeplitz
case.

Fig. 1 Example 1: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4
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Fig. 2 Example 2: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4

Now if we fix j and we put together λj (Pn(f, g)) ≈ h6 with relations (3)–
(4), then the only possibility for avoiding a contradiction is that the functions
c1(θ), c2(θ), c3(θ), c4(θ), c5(θ) all vanish at θ = 0.

The approximations c̃k , for k = 1, 2, 3, 4 shown in the right panel of Fig. 2 are
coherent with the above mathematical conclusion and in fact all these approximations
vanish simultaneously at θ = 0 (the fifth is not displayed, but we computed it and it
also equals to zero at θ = 0, while, as expected from an extension of the results by
[1] to the preconditioned Toeplitz case, the sixth is nonzero at θ = 0).

Since the argument and the conclusions are the very same, we anticipate that
the discussion can be repeated verbatim for Example 4, where the functions f and
r attain the minimum at θ = 0 with order 10. As a consequence, we expect that
the functions c1(θ), . . . , c9(θ) all simultaneously vanish at θ = 0, while c10(0) �=
0: this is confirmed for the first four of them as reported in the right panel of
Fig. 4.

Fig. 3 Example 3: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4
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Fig. 4 Example 4: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4

Example 3 Let g, f , and r be the functions defined as

f (θ) = 1 + cos(θ) + 1

4
cos(2θ) + 1

5
cos(3θ) + 1

10
cos(4θ) + 1

10
cos(5θ) ,

g(θ) = 2 − 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= 1 + cos(θ) + 1

4 cos(2θ) + 1
5 cos(3θ) + 1

10 cos(4θ) + 1
10 cos(5θ)

2 − 2 cos(θ)
,

where θ ∈ [0, π ]. The graphs of generating functions are shown in left panel of
Fig. 3, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Note that min g(θ) = 0, ∀ θ ∈ [0, π ], f ′′(0) �= 0, and furthermore r is monotone.
We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Example 4 Let g, f , and r be the functions defined as

f (θ) = 252 − 420 cos(θ)+240 cos(2θ)−90 cos(3θ) + 20 cos(4θ) − 2 cos(5θ) = (2 − 2 cos(θ))5 ,

g(θ) = 2 + 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= (2 − 2 cos(θ))5

2 + 2 cos(θ)
,

Fig. 5 Example 5: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4
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Fig. 6 Example 1: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 7 Example 2: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 8 Example 3: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 9 Example 4: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 10 Example 5: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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where θ ∈ [0, π ]. The graphs of generating functions are shown in left panel of
Fig. 4, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Remark that min g(θ) = 0, ∀ θ ∈ [0, π ], f ′′(0) = 0, and furthermore r is monotone.
We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Example 5 Let g, f , and r be the functions defined as

f (θ) = 136

17
+ 56

17
cos(θ)− 2

17
cos(2θ) + 5

17
cos(3θ) = (3 − cos(θ) + 5

17
cos(2θ))(3 + 2 cos(θ)) ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= 3 − cos(θ) + 5

17
cos(2θ) ,

where θ ∈ [0, π ]. The graphs of generating functions are shown in left panel of Fig. 5,
and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel. Notice that
min g(θ) > 0, ∀ θ ∈ [0, π ], f ′′(0) �= 0, and furthermore r is non monotone. We set
n = n1 ∈ {40, 60, 80, 100} and m = 2.

The numerical tests related to Examples 1 and 2, as in Figs. 6 and 7, show that the
error expansion (1) behaves as expected. In Fig. 11, we also see that the approximated
c̃k can be used for a large n to approximate the error term to (or almost to) machine
precision.

In the numerical tests associated with Examples 3 and 4, as in Figs. 8 and 9, we
observe again that the error expansion is in accordance with (1). We also note a
slight deviation for the largest eigenvalue and this has to be expected since we have
r(θ1,n) → ∞ as n → ∞ for Example 3 (on the other hand for Example 4 we
notice r(θn,n) → ∞ as n → ∞). However, the approximation of the eigenvalues of
Pn(f, g) is excellent and almost to machine precision as reported in Fig. 12.

In the numerical test related to Example 5, we have a non monotone region for
θ ∈ [0, 2 tan−1(

√
3/17)] where the proposed expansion does not work. Indeed, addi-

tional errors are introduced when compared to Ej,n,0, since the sampling of r(θj1,n1)

leads to a poorer approximation after ordering than the procedure given by sampling
r(θj,n7) first and then picking samples after ordering. However, the expansion is

Fig. 11 Example 1 and 2: the errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 =
6463 in (18), corresponding to n1 = 100, and using c̃k , k = 1, 2, 3, 4, computed with m = 2
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Fig. 12 Example 3 and 4: the errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 =
6463 in (18), corresponding to n1 = 100, and using c̃k , k = 1, 2, 3, 4, computed with m = 2

confirmed for the rest of the domain, as seen in Fig. 10. Furthermore, in Fig. 13, the
expansion works well again for the monotone part, by allowing an approximation
almost to machine precision of the eigenvalues of Pn(f, g).

However, even if the eigenvalues lying in the non monotone region give raise to
an irregular error pattern, it seems that there exists a kind of ‘deformed’ periodicity
in the error, like it is formally proven, without deformations, for the eigenvalues of
Tn(f ), f (θ) = 2 − 2 cos(ωθ), ω ≥ 2 integer, and g(θ) = 1 (see [12]). The latter
observation indicates that a more complete study of this ‘deformed’ periodicity has
to be considered in the future.

We finally observe that remarkable numerical results for the eigenvalues of
Pn(f, g), as reported in Figs. 11, 12 and 13, really answer in the positive to the ques-
tion posed in the title of the paper. In fact, we obtain almost machine precision for

Fig. 13 Example 5: the errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 = 6463
in (18), corresponding to n1 = 100, and using c̃k , k = 1, 2, 3, 4, computed with m = 2. Note the non
monotone part, θ ∈ [0, 2 tan−1(

√
3/17)], where the error is not improved
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the computation of the spectrum of Pn(f, g), for large n and only working with few
really small matrices.

5 Conclusions

Bogoya et al. [4–6] have recently obtained the precise asymptotic expansion for the
eigenvalues of a sequence of Toeplitz matrices {Tn(f )}, under suitable assumptions
on the associated generating function f . In this paper, we have shown numeri-
cal evidence that some of these assumptions can be relaxed and extended to the
case of a sequence of preconditioned Toeplitz matrices {Pn(f, g) = T −1

n (g)Tn(f )},
for f trigonometric polynomial, g nonnegative, not identically zero trigonometric
polynomial, r = f/g, and where the ratio r plays the same role as f in the non-
preconditioned case. The first-order asymptotic term of the expansion has been also
proven using purely linear algebra tools.

Moreover, based on the eigenvalue asymptotics, we devised an extrapolation algo-
rithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz
matrices with a high level of accuracy, with a relatively low computational cost, and
with potential application to the computation of the spectrum of differential opera-
tors. In fact, up to low rank corrections, matrices of the form Pn(f, g) appear in the
context of the spectral approximation of differential operators in which a low rank
correction of Tn(g) is the mass matrix and a low rank correction of Tn(f ) is the
stiffness matrix. We carried out also preliminary numerical tests confirming that the
same kind of asymptotic expansion holds, at least in the context of the Isogeometric
approximation of second-order differential operators.

Therefore, a plan for the future has to include:

• the theoretical proof of the asymptotic expansion in (1) for α > 1;
• the analysis of the non monotone case and its relations with the study in [12] for

the special case where f (θ) = 2 − 2 cos(ωθ), ω ≥ 2 integer, and g(θ) = 1;
• the extension of the results by [1] to the preconditioned Toeplitz case and the

study of its connection with the general expansion in (1);
• the extension of the numerical and theoretical study to a multidimensional, block

setting, with special attention to the matrices coming from the approximation of
elliptic differential operators.
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Appendix

Theorem 1 Let f , g be real-valued cosine trigonometric polynomials (RCTP) on
[0, π ] with Mg = max g > 0 and mg = min g ≥ 0. If r = f

g
is monotone on [0, π ]

then ∃ C > 0 such that
∣∣∣∣λj (Pn(f, g)) − r

(
jπ

n + 1

)∣∣∣∣ ≤ Ch ∀ j, ∀ n, (19)

where

• Pn(f, g) is the “preconditioned” matrix Pn(f, g) = T −1
n (g)Tn(f ),

• λ1(Pn(f, g)), λ2(Pn(f, g)), . . . , λn(Pn(f, g)) are the eigenvalues of Pn(f, g),
arranged in nondecreasing or nonincreasing order, depending on whether r is
increasing or decreasing,

• h = 1
n+1 and θj,n = jπ

n+1 = jπh.

Proof For the sake of simplicity, we assume that r is nondecreasing (the other case
has a similar proof).

Notice that the conditions on f and g imply that Tn(g) is positive definite and, by
setting ∼ the symbol representing similarity between matrices, we find Pn(f, g) ∼
T

−1/2
n (g)Tn(f )T

−1/2
n (g) so we can order the eigenvalues of Pn(f, g) as follows

λ1(Pn(f, g)) ≤ λ2(Pn(f, g)) ≤ · · · ≤ λn(Pn(f, g)).

We remark that
Tn(f ) = τn(f ) + Hn(f ),

Tn(g) = τn(g) + Hn(g),
(20)

where, for ψ RCTP of degree m and Q =
(√

2
n+1 sin

(
ijπ
n+1

))n

i,j=1
, τn(ψ) is the

following τ matrix [3] of size n generated by ψ

τn(ψ) = Q diag
1≤j≤n

(
ψ

(
jπ

n + 1

))
Q, Q = QT = Q−1,

and Hn(ψ) is the Hankel matrix

Hn(φ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ψ̂2 ψ̂3 · · · ψ̂m

ψ̂3 . .
.

... . .
.

ψ̂m

ψ̂m

. .
. ...

. .
.

ψ̂3

ψ̂m · · · ψ̂3 ψ̂2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.
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with rank(Hn(ψ)) ≤ 2(m − 1).
Hence,

Rf := rank(Hn(f )) ≤ 2(deg(f ) − 1),
Rg := rank(Hn(g)) ≤ 2(deg(g) − 1),

Rf,g := max{Rf , Rg} ≤ 2 (max{deg(f ), deg(g)} − 1) .

(21)

Let P τ
n be the matrix τ−1

n (g)τn(f ),

P τ
n = Q

(

diag
1≤j≤n

(
g
(

jπ
n+1

)))−1

QQ diag
1≤j≤n

(
f
(

jπ
n+1

))
Q

= Q diag
1≤j≤n

(
f
g

(
jπ
n+1

))
Q

= Q diag
1≤j≤n

(
r
(

jπ
n+1

))
Q.

Hence, for j = 1, . . . , n

λj (P
τ
n ) = r

(
jπ

n + 1

)
. (22)

By observing that T −1
n (g)Tn(f ) is similar to T

−1/2
n (g)Tn(f )T

−1/2
n (g), using the

MinMax spectral characterization for Hermitian matrices [2], fixed j ∈ {Rf,g +
1, . . . , n − Rf,g} and T ⊂ C

n, dim(T ) = n + 1 − j , we obtain

λj (Pn(f, g)) = λj

(
T −1

n (g)Tn(f )
)

= λj

(
T

−1/2
n (g)Tn(f )T

−1/2
n (g)

)

= maxdim(T )=n+1−j

(
minx∈T ,

x �=0

(
x∗T −1/2

n (g)Tn(f )T
−1/2
n (g)x

x∗x

))

= maxdim(T )=n+1−j

⎛

⎜⎜
⎝min x∈T ,

x �=0

y=T
−1/2
n (g)x

(
y∗Tn(f )y
y∗Tn(g)y

)
⎞

⎟⎟
⎠

= maxdim(T̂ )=n+1−j

(

min
y∈T̂ ,
y �=0

(
y∗Tn(f )y
y∗Tn(g)y

))

,

(23)

because T
−1/2
n (g) is a full rank matrix and, if dim(T ) = n + 1 − j , then T̂ := {y :

y = T
−1/2
n (g)x, x �= 0, x ∈ T } is a new vector space having the same dimension

n + 1 − j as T .
Let F be the subspace of Cn generated by the union of the columns of matri-

ces Hn(f ) and Hn(g). Because of the particular structure of the columns of Hankel
matrices Hn(f ) and Hn(g), we deduce

dim(F ) = max {rank(Hn(g)), rank(Hn(f ))} = Rf,g,

so that
dim(F⊥) = n − Rf,g.

Let us define Wf,g = T̂ ∩ F⊥,

n + 1 − j ≥ dim(Wf,g) ≥ max{0, dim(T̂ ) + dim(F⊥) − n} = n + 1 − j

+n − Rf,g − n = n + 1 − (j + Rf,g),
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because n + 1 − (j + Rf,g) ≥ 1 for j ≤ n − Rf,g . The latter implies in particular
that Wf,g �= ∅. Thus, due to the orthogonality, ∀ y �= 0 ∈ Wf,g , we find

Hn(f )y = 0, Hn(g)y = 0,

so that
y∗Hn(f )y = 0, y∗Hn(g)y = 0.

Hence, from (23)

λj (Pn(f, g)) = maxdim(T̂ )=n+1−j

(

min
y∈T̂ ,
y �=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

≤ maxdim(T̂ )=n+1−j

(

miny∈Wf,g
y �=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

)
)

= maxdim(T̂ )=n+1−j

(

miny∈Wf,g
y �=0

(
y∗τn(f )y
y∗τn(g)y

)
)

= max
Wf,g=T̂ ∩F⊥
dim(T̂ )=n+1−j

(

miny∈Wf,g,
y �=0

(
y∗τn(f )y
y∗τn(g)y

)
)

≤ max
n+1−j≥dim(Ŵf,g)≥n+1−(j+Rf,g)

(

min
y∈Ŵf,g ,

y �=0

(
y∗τn(f )y
y∗τn(g)y

)
)

= max
n+1−j≥dim(Ŵ )≥n+1−(j+Rf,g)

⎛

⎜⎜⎜
⎝
min

y∈Ŵf,g ,
y �=0

x=τ
1/2
n (g)y

(
x∗τ

−1/2
n (g)τn(f )τ

−1/2
n (g)x

x∗x

)

⎞

⎟⎟⎟
⎠

= max{λj (P
τ
n ), λj+1(P

τ
n ), . . . , λj+Rf,g

(P τ
n )}

= λj+Rf,g
(P τ

n ).

(24)

By fixing j ∈ {Rf,g + 1, . . . , n − Rf,g} and T ⊂ C
n, dim(T ) = j , analogously

we obtain

λj (Pn(f, g)) = mindim(T )=j

(
maxx∈T ,

x �=0

(
x∗T −1/2

n (g)Tn(f )T
−1/2
n (g)x

x∗x

))

= mindim(T )=j

⎛

⎜⎜
⎝max x∈T ,

x �=0

y=T
−1/2
n (g)x

(
y∗Tn(f )y
y∗Tn(g)y

)
⎞

⎟⎟
⎠

= mindim(T̂ )=j

(

max
y∈T̂ ,
y �=0

(
y∗Tn(f )y
y∗Tn(g)y

))

= mindim(T̂ )=j

(

max
y∈T̂ ,
y �=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

.

(25)

Let us define Wf,g = T̂ ∩ F⊥,

j ≥ dim(Wf,g) ≥ max{0, dim(T̂ )+ dim(F⊥)−n} = j +n−Rf,g −n = j −Rf,g,

because j −Rf,g ≥ 1 for j ≥ Rf,g+1. The latter implies in particular that Wf,g �= ∅,
and hence, due to the orthogonality, ∀ y �= 0 ∈ Wf,g , we have

Hn(f )y = 0, Hn(g)y = 0,
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and therefore
y∗Hn(f )y = 0, y∗Hn(g)y = 0.

Thus, from (25)

λj (Pn(f, g)) ≥ mindim(T̂ )=j

(

maxy∈Wf,g,
y �=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

= mindim(T̂ )=j

(

maxy∈Wf,g,
y �=0

(
y∗τn(f )y
y∗τn(g)y

))

= min
Wf,g=T̂ ∩F⊥

dim(T̂ )=j

(

maxy∈Wf,g,
x �=0

(
y∗τn(f )y
y∗τn(g)y

))

≥ min
j≥dim(Ŵf,g)≥j−Rf,g

(

maxy∈Wf,g,
y �=0

(
y∗τn(f )y
y∗τn(g)y

))

= min{λj (P
τ
n ), λj−1(P

τ
n ), . . . , λj−Rf,g

(P τ
n )}

= λj−Rf,g
(P τ

n ).

(26)

By exploiting the previous inequality, relations (22) and (24), we obtain for j =
Rf,g + 1, . . . , n − Rf,g

r

(
(j − s)π

n + 1

)
= λj−s(P

τ
n ) ≤ λj (Pn(f, g)) ≤ λj+s(P

τ
n ) = r

(
(j + s)π

n + 1

)
, (27)

where s = Rf,g .
The function r is a RCTP on [0, π ] and a monotone increasing function so we have,
∀ n and ∀ j = s + 1, . . . , n − s,

λj (Pn(f, g))−r

(
jπ

n + 1

)
≤r

(
(j + s)π

n+ 1

)
−r

(
jπ

n + 1

)
=r ′(θ̄)

sπ

n+1
≤ ||r ′||∞sπh,

(28)

with θ̄ ∈
(

jπ
n+1 ,

(j+s)π
n+1

)
and

λj (Pn(f, g)) − r

(
jπ

n + 1

)
≥ r

(
(j − s)π

n + 1

)
− r

(
jπ

n + 1

)
≥ −||r ′||∞sπh. (29)

By setting C = ||r ′||∞sπ , for s + 1 ≤ j ≤ n − s, we obtain
∣∣∣∣λj (Pn(f, g)) − r

(
jπ

n + 1

)∣∣∣∣ ≤ Ch. (30)

Furthermore, from [11] ∀ j = 1, . . . , n, we know that

mr ≤ λj (Pn(f, g)) ≤ Mr,

where
mr = min

θ∈[0,π] r(θ); mr = max
θ∈[0,π]

r(θ),

with strict inequalities that is mr < λj (Pn(f, g)) < Mr if mr < Mr , while the case
mr = Mr is in fact trivial. Hence, for n − s < j ≤ n
∣∣∣∣r
(

jπ

n + 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤
∣∣∣∣r
(

jπ

n + 1

)
− r

(
nπ

n + 1

)∣∣∣∣ ≤ ∣∣r ′ (θ̄
)∣∣
∣∣∣∣
(n − j)π

n + 1

∣∣∣∣ ,
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where θ̄ ∈ (
jπ
n+1 ,

nπ
n+1 ). If n − s < j ≤ n then |n − j | < s, so that
∣∣∣∣r
(

jπ

n + 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤ ||r ′||∞sπh = Ch.

For 1 ≤ j < s + 1
∣∣∣∣r
(

jπ

n + 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤
∣∣∣∣r
(

jπ

n + 1

)
− r

(
π

n + 1

)∣∣∣∣ ≤ ∣∣r ′ (θ̄
)∣∣
∣∣∣∣
(j − 1)π

n + 1

∣∣∣∣ ,

where θ̄ ∈ ( π
n+1 ,

jπ
n+1 ). If 1 ≤ j < s + 1 then |j − 1| < s, so
∣∣∣∣r
(

jπ

n + 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤ ||r ′||∞sπh = Ch.

Hence, ∣∣∣∣λj (Pn(f, g)) − r

(
jπ

n + 1

)∣∣∣∣ ≤ Ch ∀ j ∀ n.

Here, we present a second proof of the previous theorem.

Proof We adopt the very same notation used for the first proof. First, we notice that
the low rank matrices Hn(f ) and Hn(g) are also Hermitian matrices because Tn(f ),
Tn(g), τn(f ), and τn(g) are Hermitian matrices. Let xi and λi (Pn(f, g)) be a pair
eigenvector and eigenvalue of Pn(f, g). Then we can write

Pn(f, g)xi = λi (Pn(f, g)) xi .

By multiplying the previous equation from the left by the matrix Tn(g) = τn(g) +
Hn(g), we obtain

(τn(f ) + Hn(f )) xi = λi (Pn(f, g)) (τn(g) + Hn(g)) xi ,

which is equivalent to

(τn(f ) + Hn(f ) − λi (Pn(f, g)) Hn(g)) xi = λi (Pn(f, g)) τn(g)xi .

Finally, by setting yi = τ
1/2
n (g)xi and by multiplying from the left by the matrix

τ
−1/2
n (g), we have

τ−1/2(g) (τn(f ) + Hn(f ) − λi (Pn(f, g)) Hn(g)) τ−1/2(g)yi = λi (Pn(f, g)) yi .

(31)
Equation (31) tells us that λi (Pn(f, g)) is also the eigenvalue of

τ
−1/2
n (g) (τn(f ) + Hn(f ) − λi (Pn(f, g)) Hn(g)) τ

−1/2
n (g).

We can write

τ
−1/2
n (g) (τn(f ) + Hn(f ) − λi (Pn(f, g)) Hn(g)) τ

−1/2
n (g)

as

τ
−1/2
n (g)τn(f )τ

−1/2
n (g) + τ

−1/2
n (g) (Hn(f ) − λi (Pn(f, g)) Hn(g)) τ

−1/2
n (g)

= τn(f/g) + τ
−1/2
n (g) (Hn(f ) − λi (Pn(f, g)) Hn(g)) τ

−1/2
n (g) . (32)
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Notice that the rank of any linear combination of Hn(f ) and Hn(g) is Rf,g =
max{rank(Hn(f )), rank(Hn(g))} and the argument is the special Hankel structure of
Hn(f ) and Hn(g). As a conclusion, from the expression above, using the MinMax
characterization and the interlacing theorem for Hermitian matrices, we write

λi−Rf,g
(τn(f/g)) ≤ λi (Pn(f, g)) ≤ λi+Rf,g

(τn(f/g)), (33)

where i ∈ {Rf,g−1, · · · , n−Rf,g}, which leads again to the proof of Theorem 1.

Remark With regard to Theorem 1, the case where r is bounded and nonmonotone
is even easier. If we consider r̂ , the monotone nondecreasing rearrangement of r on
[0, π ], taking into account that the derivative of r has at most a finite number S of
sign changes, we deduce that r̂ is Lipschitz continuous and its Lipschitz constant is
bounded by ‖r ′‖∞ (notice that r̂ is not necessarily continuously differentiable, but the
derivative of r̂ has at most S points of discontinuity). Furthermore, the eigenvalues
of τn(r) are exactly given

r

(
jπ

n + 1

)

so that, by ordering these values nondecreasingly, we deduce that they coincide with
r̂(xj,h), with xj,h of the form jπ

n+1 (1 + o(1)). With these premises, the proof follows
exactly the same steps as in Theorem 1, using the MinMax characterization and the
interlacing theorem for Hermitian matrices.

References

1. Barrera, M., Grudsky, S.M.: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz
matrices. Oper. Theory Adv. Appl. 259, 51–77 (2017)

2. Bhatia, R.: Matrix Analysis Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)
3. Bini, D., Capovani, M.: Spectral and computational properties of band symmetric Toeplitz matrices.

Linear Algebra Appl. 52–53, 99–126 (1983)
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