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Abstract
It is known that the generating function f of a sequence of Toeplitz matrices {Tn(f )}n
may not describe the asymptotic distribution of the eigenvalues of Tn(f ) if f is not
real. In this paper, we assume as a working hypothesis that, if the eigenvalues of
Tn(f ) are real for all n, then they admit an asymptotic expansion of the same type
as considered in previous works, where the first function, called the eigenvalue sym-
bol f, appearing in this expansion is real and describes the asymptotic distribution of
the eigenvalues of Tn(f ). This eigenvalue symbol f is in general not known in closed
form. After validating this working hypothesis through a number of numerical exper-
iments, we propose a matrix-less algorithm in order to approximate the eigenvalue
distribution function f. The proposed algorithm, which opposed to previous versions,
does not need any information about neither f nor f is tested on a wide range of
numerical examples; in some cases, we are even able to find the analytical expression
of f. Future research directions are outlined at the end of the paper.
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1 Introduction

Given a function f ∈ L1([−π, π ]), the n × n Toeplitz matrix generated by f is
defined as

Tn(f ) =
[
f̂i−j

]n

i,j=1
=

⎡
⎢⎢⎢⎢⎢⎢⎣

f̂0 f̂−1 · · · f̂1−n

f̂1
. . .

. . .
...

...
. . .

. . . f̂−1

f̂n−1 · · · f̂1 f̂0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the numbers f̂k are the Fourier coefficients of f , that is,

f̂k = 1

2π

∫ π

−π

f (θ)e−ikθ dθ, f (θ) =
∞∑

k=−∞
f̂ke

ikθ , i2 = −1, k ∈ Z.

(1)
It is known that the generating function f , also known as the symbol of the sequence
{Tn(f )}n, describes the asymptotic distribution of the singular values of Tn(f ); if f

is real or if f ∈ L∞([−π, π ]) and its essential range has empty interior and does not
disconnect the complex plane, then f also describes the asymptotic distribution of
the eigenvalues of f ; see [12, 20, 25] for details and [20, Section 3.1] for the notion
of asymptotic singular value and eigenvalue distribution of a sequence of matrices.
We will write {Tn(f )}n ∼λ f to indicate that {Tn(f )}n has an asymptotic eigenvalue
distribution described by f . The precise definition is the following [20, Section 3.1].

Definition 1 (eigenvalue distribution of a matrix sequence) Let {An}n be a matrix
sequence, with An of size n, and let f : D ⊂ R

k → C be a measurable function
defined on a set D with 0 < μk(D) < ∞. We say that it has an asymptotic eigenvalue
(or spectral) distribution described by f and we write {An}n ∼λ f , if

lim
n→∞

1

n

n∑
j=1

F(λj (An) = 1

μk(D)

∫

D

F(f (x1, . . . , xk))dx1 · · · dxk, ∀F ∈ Cc(C).

In this case, the function f is referred to as the eigenvalue (or spectral) symbol of the
matrix-sequence {An}n.

Informally, this means that if we have a continuous a.e. and real f , an equispaced
grid θj,n in its domain, and the eigenvalues suitably ordered, then, λj (An) ≈ f (θj,n)

for all j = 1, . . . , n, when n is large enough.
The cases of interest in this paper are those in which An = Tn(f ) and {Tn(f )}n 	∼λ

f (except for Examples 2 and 6, where we show that the same approach works for
{Tn(f )}n ∼λ f ) where f is complex-valued (and Tn(f ) is non-Hermitian), but the
eigenvalues of Tn(f ) are real for all n. We believe that in these cases there exist a real
function f such that {Tn(f )}n ∼λ f and the eigenvalues of Tn(f ) admit an asymptotic
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expansion of the same type as considered in previous works [2–4, 7, 8, 15–18]. We
therefore formulate the following working hypothesis.

Working Hypothesis Suppose that the eigenvalues of Tn(f ) are real for all n. Then,
for every integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic
expansion holds:

λj (Tn(f )) = f(θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α,

=
α∑

k=0

ck(θj,n)h
k + Ej,n,α, (2)

where:

• the eigenvalues of Tn(f ) are arranged in non-decreasing order, λ1(Tn(f )) ≤
. . . ≤ λn(Tn(f ));

• {c0, c1, c2, c3, . . .} is a sequence of functions from (0, π) to R which depends
only on f , and f := c0;

• h = 1
n+1 and θj,n = jπ

n+1 = jπh;
• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|Ej,n,α| ≤ Cαhα+1 for some constant Cα depending only on α, f .

Remark 1 In item three of the working hypothesis, the grid θj,n is defined, but for
some matrices, it is advantageous to define a different equispaced grid, e.g., by choos-
ing h = 1/n; see, e.g., [15] where the grid θj,n = jπ/n is almost the “perfect grid”
ξj,n (defined, such that, λj (Tn(f )) = f(ξj,n) for j = 1, . . . , n). The typically not
equispaced “perfect grid” ξj,n is further discussed in [14]. When choosing a different
grid θj,n in item three, the functions c1, c2, c3, . . . in item two will differ, but c0 = f

remains the same; when choosing the (typically unknown) grid ξj,n, then ck = 0 for
k > 0. The functions ck can also be defined on any interval, not just (0, π), but then h

and θj,n in item three should be modified accordingly. Also, in the working hypoth-
esis, we arrange the eigenvalues of Tn(f ) in non-decreasing order; however, using a
non-increasing order would result in another function f. The case where the eigen-
values of Tn(f ) can be described by a complex-valued or non-monotone function f

is out of the scope of this article and warrants further research.

2 Motivation and illustrative examples

In this section, we present four examples in support of our working hypothesis.
We also discuss the fact that standard double precision eigenvalue solvers (such
as LAPACK, eig in MATLAB, and eigvals in JULIA [6]) fail to give accurate
eigenvalues of certain non-Hermitian matrices Tn(f ) (both with real and complex
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eigenvalues); see, e.g., [5, Section 7], [12, Sections 3 and 5.8], [22], and [26, Chap-
ter II]. A simple illustrative example is the Toeplitz matrix Tn(f ) generated by the
symbol f (θ) = eiθ +e−2iθ presented in Fig. 1; see, e.g., [5, Section 5.1]. The numer-
ically computed eigenvalues �j(Tn(f )) (beige) and �j(T

T
n (f )) (blue), for n = 999

and using MATLAB (double precision), differ and neither is correct. A high-precision
computation (256 bit) [1] of the eigenvalues λj (Tn(f )) (green) agrees well with the
theoretical prediction; see, e.g., [23, Section 7] and [10, Example 11.18]. Along the
first arm of the “star,” the eigenvalues are real, and the other arms are simply rotations
of these real eigenvalues.

High-precision computations, by using packages such as GENERICLINEARALGE-
BRA.JL [1] in JULIA can compute the true eigenvalues, but they are very expensive
from the computational point of view. Therefore, approximating f on the grid θj,n and
using matrix-less methods, described in Section 3, to compute the spectrum of Tn(f )

can be computationally very advantageous. Also, the presented approaches can be a
valuable tool for the analysis of the spectra of non-normal Toeplitz matrices having
real eigenvalues.

Here is a short description of the four examples we are going to consider, where
ξj,n is the “perfect grid” defined in Remark 1.

• Example 1: Tn(f ) is non-symmetric tridiagonal, f is known, and the eigenvalues
λj (Tn(f )) = f(θj,n) are known explicitly;

• Example 2: Tn(f ) is symmetric pentadiagonal, f = f , and the eigenvalues
λj (Tn(f )) = f(ξj,n) are not known explicitly;

• Example 3: Tn(f ) is non-symmetric, f is known, and the eigenvalues
λj (Tn(f )) = f(ξj,n) are not known explicitly;

• Example 4: Tn(f ) is non-symmetric, f is not known, and the eigenvalues
λj (Tn(f )) = f(ξj,n) are not known explicitly.

Example 1 Consider the symbol

f (θ) = f̂−1e
−iθ + f̂0 + f̂1e

iθ . (3)

The matrix Tn(f ) is tridiagonal, and there exists a function

f(θ) = f̂0 + 2
√

f̂−1

√
f̂1 cos(θ), (4)

Fig. 1 [Symbol f (θ) = eiθ +e−2iθ , n = 999] The matrix Tn(f ) and the numerically (incorrect) computed
eigenvalues �j (Tn(f )) (beige) and �j (T

T
n (f )) (blue), using a double precision solver (MATLAB). To the

right is shown the eigenvalues λj (Tn(f )) (green), computed using a high-precision solver [1], agreeing
well with the theory
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Fig. 2 [Example 1: Symbol f (θ) = −2e−iθ + 2 − eiθ ] Left: Plots in the complex plane of f (θ) (red line),
f(θ) = 2 − 2

√
2 cos(θ) (dashed black line), and λj (Tn(f )) = λj (Tn(f)) for n = 5 (green dots). Right:

Plots of f and λj (T5(f )) = λj (T5(f)) = f(θj,n)

such that Tn(f ) ∼ Tn(f), that is, they are similar and hence have the same
eigenvalues. The eigenvalues are given explicitly by

λj (Tn(f )) = f(θj,n), (5)

where θj,n is defined in the working hypothesis. Now, choose the Fourier coefficients
f̂−1 = −2, f̂0 = 2, and f̂1 = −1. In this case, we have

f (θ) = −2e−iθ + 2 − eiθ ,

and thus,

f(θ) = 2 − 2
√

2 cos(θ), (6)

where the spectrum of Tn(f ) is real and is described by f(θ), and the symbol f is
complex-valued. The Toeplitz matrices generated by f and f are given by

Tn(f ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −2
−1 2 −2

. . .
. . .

. . .
. . .

. . . −2
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, Tn(f) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −√
2

−√
2 2 −√

2
. . .

. . .
. . .

. . .
. . . −√

2
−√

2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We also note that Tn(f) is a symmetrized version of Tn(f ), in the sense that there
exists a transformation Tn(f) = DTn(f )D−1 where D is a diagonal matrix with

elements (D)i,i = γ i−1, and γ =
√

f̂−1/

√
f̂1; see, e.g., [21].

In the left panel of Fig. 2, we represent the function f (red line), f (dashed black
line), and the eigenvalues λj (Tn(f )) = λj (Tn(f)) (green dots) for n = 5. In the right
panel of Fig. 2, we show the function f (dashed black line) on the interval [0, π ] only
(since it is even on [−π, π ]) and the eigenvalues λj (T5(f )) = λj (T5(f)) = f(θj,5)

(green dots).
In Fig. 3, we present the symbol f (θ) (red line), the numerically computed spectra

�j(Tn(f )) (beige dots), and �j(T
T
n (f )) (blue dots), for n = 1000, using a standard

double precision eigenvalue solver. The analytical spectrum, defined by (5) and (6),
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Fig. 3 [Example 1: Symbol f (θ) = −2e−iθ + 2 − eiθ ] Symbol f (θ) (red line), the numerically computed
spectra (using a standard double precision eigenvalue solver) �j (T1000(f )) (beige dots), �j (T

T
1000(f ))

(blue dots), and the analytical spectrum λj (T1000(f )) = f(θj,1000) (green dots)

is also shown (green dots). These numerically computed eigenvalues �j(An), for
non-Hermitian An, are related to the pseudospectrum, discussed for example in [5,
12, 22, 26].

Example 2 In this example, we consider the symbol

f (θ) = (2 − 2 cos(θ))2 = 6 − 8 cos(θ) + 2 cos(2θ),

which generates a Toeplitz matrix Tn(f ) associated with the second order finite
difference approximation of the bi-Laplacian,

Tn(f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1

−4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

. . .
. . .

. . . −4

1 −4 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrices Tn(f ) are all Hermitian and so they have a real spectrum. Moreover, we
have f (θ) = f(θ) and {Tn(f )}n ∼λ f . In Fig. 4, we represent the symbol f = f and
the eigenvalues of Tn(f ) for n = 5. The “perfect grid” ξj,n such that λj (Tn(f )) =
f(ξj,n) is not equispaced but can in this case be obtained by either computing ξj,n =
2 sin−1 (

(λj (Tn(f )))1/4/2
)

(since f (θ) = 16 sin4(θ/2)), finding the roots in (0, π)

of f(θ) − λj (Tn(f )) with eigenvalues given by some standard solver, or using the
expansion described in [14] for large n.



Numerical Algorithms

Fig. 4 [Example 2: Symbol f (θ) = 6−8 cos(θ)+2 cos(2θ)] Symbols f (θ) (red line), f(θ) (dashed black
line), and λj (T5(f )) = f(ξj,5) (green dots)

Example 3 In this example, we consider the following symbol

f (θ) = e−3iθ − 4e−2iθ + 6e−iθ − 4 + eiθ

= e−iθ (6 − 8 cos(θ) + 2 cos(2θ))

= e−iθ (2 − 2 cos(θ))2 .

The Toeplitz matrix Tn(f ) is a shifted version of the matrix considered in Example 2
(that is, the matrix associated with the second order finite difference approximation
of the bi-Laplacian), and it is given by

Tn(f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

. . .
. . .

. . . −4
. . .

. . . 6

1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We note that,

f (θ) = e−iθ (2 − 2 cos(θ))2

= e−3iθ
(

1 − eiθ
)4

,
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Fig. 5 [Example 3: Symbol f (θ) = e−iθ (6 − 8 cos(θ) + 2 cos(2θ))] Left: Plots in the complex plane of
f (θ) (red line), f(θ) = − sin4(θ)/(sin(θ/4) sin3(3θ/4)) (dashed black line), and λj (Tn(f )) for n = 5
(green dots). Right: Plot of f and λj (T5(f )) = f(ξj,5)

which is equivalent to (41) in [24, Example 3.] with z = eiθ , a = −1, r = 3, and
s = 1. Hence, by (43) in [24], we have,

f(θ) = − sin4(θ)

sin(θ/4) sin3(3θ/4)
, (7)

and the matrix Tn(f) would be full with λj (Tn(f )) ≈ λj (Tn(f)) ∈ (− (r+s)r+s

rr ss , 0) =
(− 256

27 , 0) for all j .
In the left panel of Fig. 5, we represent the functions f (red line), f (dashed black

line) and the eigenvalues λj (Tn(f )) (green dots) for n = 5. In the right panel of
Fig. 5, we show the function f (dashed black line) on the interval [0, π ] only (since it
is even on [−π, π ]) and the eigenvalues λj (T5(f )) = f(ξj,5) (green dots).

In Fig. 6, we present the symbol f (red line), the numerically computed spec-
tra �j(Tn(f )) (beige dots) and �j(T

T
n (f )) (blue dots), for n = 1000, using a

Fig. 6 [Example 3: Symbol f (θ) = e−iθ (6 − 8 cos(θ) + 2 cos(2θ))] Symbol f (θ) (red line), the numer-
ically computed spectra (using a standard double precision eigenvalue solver in JULIA) �j (T1000(f ))

(beige dots), �j (T
T

1000(f )) (blue dots), and approximated spectrum λj (T1000(f )) = f(ξj,1000) (green dots)
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standard double precision eigenvalue solver. The approximations of the true eigen-
values λj (T1000(f )) = f(ξj,1000) (green dots) are also shown, computed with 128 bit
precision BigFloat.

Example 4 In this example, we consider a symbol f where the expression for f is not
known explicitly. Let,

f (θ) = −e−4iθ + 2e−3iθ − 2e−2iθ + 9e−iθ + 7eiθ − e2iθ + e3iθ ,

which generates the matrix

Tn(f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9 −2 2 −1

7 0 9 −2 2 −1

−1 7 0 9 −2 2 −1

1 −1 7 0 9 −2 2 −1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −1

. . .
. . .

. . .
. . .

. . .
. . . 2

. . .
. . .

. . .
. . .

. . . −2
. . .

. . .
. . .

. . . 9

1 −1 7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From [24, Example 4.] we have strong indications that approximately λj (Tn(f )) ∈
[−22.09, 14.96] for all j .

Fig. 7 [Example 4: Symbol f (θ) = −e−4iθ + 2e−3iθ − 2e−2iθ + 9e−iθ + 7eiθ − e2iθ + e3iθ ] Left:
Symbol f (θ) (red line), λj (T1000(f )) (black dots) (since f(θ) is unknown) and λj (Tn(f )) for n = 5
(green dots). Right: Eigenvalues λj (T1000(f )) ordered in non-decreasing order and λj (T5(f )) = f(ξj,5).
The grid points ξj,5 are computed by constructing f̃(θ) as described in Section 3.2 and finding the zeros
of f̃(θ) − λj (T5(f ))
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In the left panel of Fig. 7, we represent the symbol f (red line) and the eigenvalues
λ1000(Tn(f )), computed with 256 bit precision BigFloat (black dots) since f is
not known. The eigenvalues λj (Tn(f )) (green dots) for n = 5 are also shown. In
the right panel of Fig. 7, we again show the eigenvalues λ1000(Tn(f )) arranged in
non-decreasing order (black dots) since f is not known on the interval [0, π ], and
it is even on [−π, π ]. Also the eigenvalues λj (T5(f )) = f(ξj,5) (green dots) are
shown. The “perfect” grid ξj,n is computed using data from Example 8. Numerically,
we have λj (T1000(f )) ∈ [−22.0912, 14.9641] in agreement with [24]. In Fig. 8, we
present the numerically computed spectra �j(Tn(f )) (beige dots) and �j(T

T
n (f ))

(blue dots), for n = 1000, using a standard double precision eigenvalue solver. The
true eigenvalues λj (T1000(f )) = f(ξj,1000) (green dots) are approximated using a
256 bit precision computation.

3 Describing the real-valued eigenvalue distribution

Assuming that f is a real cosine trigonometric polynomial (RCTP) symbol associ-
ated with a symbol f as in the working hypothesis, we introduce in Section 3.1
a new matrix-less method to accurately compute the expansion functions ck, k =
0, . . . , α, where we recall from the working hypothesis that c0 = f. Subsequently, in
Section 3.2, we present procedures to obtain an approximation or even the analytical
expression of f.

3.1 Approximating the expansion functions ck in grid points θj ,n0

An asymptotic expansion of the eigenvalue errors Ej,n,0 := Ej,n (when sampling
the symbol f with the grid θj,n defined in the working hypothesis, under certain

Fig. 8 [Example 4: Symbol f (θ) = −e−4iθ + 2e−3iθ − 2e−2iθ + 9e−iθ + 7eiθ − e2iθ + e3iθ ] Symbol
f (θ) (red line), the numerically computed spectra �j (T1000(f )) (beige dots), �j (T

T
1000(f )) (blue dots),

and λj (T1000(f )) = f(ξj,n) (green dots)
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assumptions on f implying that f = f ) was previously discussed in a series of
papers [7, 8, 11]; such expansions can be deduced from

λj (Tn(f )) = f (θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α

︸ ︷︷ ︸
Ej,n

, (8)

where θj,n, h, and Ej,n,α are defined in the working hypothesis.
In [7, pp. 1329], [8], and then [18], an algorithm was proposed to approximate

the functions ck(θ), which was subsequently extended and studied, see [2–4, 15–
17], to cover also other types of Toeplitz-like matrices An, possessing an asymptotic
expansion such as (8). We call this type of methods matrix-less, since they do not
need to construct the large matrix An to approximate its eigenvalues; indeed, they
approximate the functions ck(θ) from α small matrices An1 , . . . , Anα and then they
use this approximations to compute the approximate spectrum of An through the
formula

λj (An) ≈ λ̃j (An) = f (θj,n) +
α∑

k=1

c̃k(θj,n)h
k . (9)

Assuming that the eigenvalues of Tn(f ) admit an asymptotic expansion in terms of
a possibly unknown function f instead of f , as in our working hypothesis, we can
modify Algorithm 1 in [13, Section 2.1] in order to find approximations of both f and
the eigenvalues of Tn(f ) through the following formula, analogous to (9):

λj (Tn(f )) ≈ λ̃j (Tn(f )) =
α∑

k=0

c̃k(θj,n)h
k

= f̃(θj,n) +
α∑

k=1

c̃k(θj,n)h
k, (10)

where the approximation f̃(θ) := c̃0(θ) of f(θ) := c0(θ) is obtained from α + 1 small
matrices Tn0(f ), . . . , Tnα (f ) as mentioned above.

Here follows an implementation in JULIA of the algorithm that computes the
approximations c̃k(θ) for k = 0, . . . , α; the algorithm is written for clarity and
not performance. All computations in this article are made with JULIA 1.6.0 [6],
using Float64 and BigFloat data types, and the GENERICLINEARALGEBRA.JL

package [1].
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Using the output c̃k(θj,n0), we can employ the interpolation–extrapolation tech-
nique described in [17] to efficiently compute very accurate approximations of c̃k(θ)

and, through (10), the eigenvalues of Tn(f ) for an arbitrarily large order n. In the
next section, we focus on the use of the approximations c̃0 = f̃ to describe f.
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3.2 Constructing a function f from approximations f̃(θj ,n0 ) = c̃0(θj ,n0 )

We here assume, for the sake of simplicity, that the sought function f is real and even,
so that it admits a cosine Fourier series of the form

f(θ) = f̂0 + 2
∞∑

k=1

f̂k cos(kθ), f̂k ∈ R. (11)

As we shall see, if f is a real cosine trigonometric polynomial (RCTP), that is, a
function of the form

f(θ) = f̂0 + 2
m∑

k=1

f̂k cos(kθ), f̂k ∈ R, (12)

then we will be able to recover the exact expression of f (see Examples 5 and 6);
otherwise, we will get a truncated representation of the Fourier expansion of f in (11)
(see Examples 7 and 8). More specifically, what we do is the following: we consider
the approximations c̃0(θj,n0) provided by Algorithm 1 and we approximate the first

n0 Fourier coefficients f̂0, . . . , f̂n0 with the numbers ˜̂
f0, . . . ,

˜̂
fn0 obtained by solving

the linear system

˜̂
f0 + 2

n0∑
k=1

˜̂
fk cos(kθj,n0) = c̃0(θj,n0), j = 1, . . . , n0. (13)

4 Numerical examples

We now employ the proposed Algorithms 1 and 2 on matrices generated by the sym-
bols f discussed in Examples 1–4 to highlight the applicability of the approach, in
the respective Examples 5–8.

• Example 5: Only c̃0 is non-zero, since θj,n gives exact eigenvalues, and the
function f is constructed.
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• Example 6: Symbol f = c0, and ck, k = 1, . . . , 4, are recovered accurately, and
the function f = f is constructed.

• Example 7: Symbol f = c0, and ck, k = 1, . . . , 4, are recovered accurately, and
a truncated RCTP representation of of f is constructed.

• Example 8: Symbol f = c0, and ck, k = 1, . . . , 4, are constructed, and a
truncated RCTP representation of of f is constructed.

Example 5 We return to the non-symmetric symbol f (θ) = −2e−iθ + 2 − eiθ of
Example 1, and first use the proposed Algorithm 1. Note that care has to be taken
when using for example standard MATLAB eig command, since already for n = 160
the computed eigenvalues are wrong and complex-valued. In such a circumstance, a
choice of n0 and α needs to be such that nα = 2α(n0 + 1) − 1 < 160. However, we
here also use an arbitrary precision solver, GENERICLINEARALGEBRA.JL in JULIA,
so we can increase precision such that theoretically any combination of n0 and α can
be chosen. The performance however decreases fast as we increase the computational
precision, making obvious the applicability of the current proposed algorithms.

In Fig. 9, we present the computation of c̃k(θj,n0), for n0 = 31, and different
precision and α. In the left panel, we show the approximated expansion functions c̃k ,
k = 0, . . . , α, where α = 4, and using 128 bit precision computation. As is seen,
the only non-zero c̃k is c̃0, which is expected since the exact eigenvalues are given
by f(θj,n0) = c0(θj,n). In the right panel of Fig. 9, we show the absolute error in the
approximation of c0(θj,n0) for double precision computation, with α = 2, and 128
bit computation, with α = 4.

Now we employ Algorithm 2 to compute the Fourier coefficients of f. For illustra-
tive purposes, we only show a subset of the system (13). If we choose n0 = 2β−1, we
have three grid points θjβ,n0 equal to π/4, π/2 and 3π/4, corresponding to indices
jβ = 2β−2{1, 2, 3}. We then have

⎡
⎣

1
√

2 0
1 0 −1
1 −√

2 0

⎤
⎦

⎡
⎢⎢⎣

˜̂
f0
˜̂
f1
˜̂
f2

⎤
⎥⎥⎦ ≈

⎡
⎣

c̃0(π/4)

c̃0(π/2)

c̃0(3π/4)

⎤
⎦ .

Fig. 9 [Example 5: Symbol f (θ) = −2e−iθ + 2 − eiθ ] The computed c̃k(θj,n0 ), k = 0, . . . α, n0 = 31
using Algorithm 1. Left: Computation using 128 bit precision with α = 4. Only c̃0(θj,n0 ) = f̃(θj,n0 )

are non-zero. Right: The absolute errors of c̃0(θj,n) compared with f(θj,n) for double precision (53 bits
Float64) computation, with α = 2, and 128 bit precision BigFloat, with α = 4
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We construct the following system with c̃0 computed with n0 = 31 (that is, β = 5

and α = 2 above) using double precision, and subsequently we compute [˜̂f0, ˜̂f1, ˜̂f2]T,

⎡
⎣

1
√

2 0
1 0 −1
1 −√

2 0

⎤
⎦

⎡
⎢⎢⎣

˜̂
f0˜̂
f1˜̂
f2

⎤
⎥⎥⎦ ≈

[
0.000000000006924
1.999999999889880
3.999999989588136

]
,

⎡
⎢⎢⎣

˜̂
f0˜̂
f1˜̂
f2

⎤
⎥⎥⎦ ≈

[
1.999999994797530

−1.414213558689498
−0.000000005092350

]
.

We conclude from this computation that f(θ) = f̂0 + 2f̂1 cos(θ) + 2f̂2 cos(2θ) = 2 −
2
√

2 cos(θ), which is the already known analytical expression; see (5) and (6). Note
also that, in this simple example, the vector containing c̃0(θjβ ,n0) can be assumed to
be equal to [0, 2, 4]T, which would yield the exact solution (to machine precision).
Using the full system (13) in Algorithm 2 yields the same result. If we now would
approximate the monotonically non-increasing f (instead of the non-decreasing) in
Algorithm 1, the vector containing c̃(θjβ ,n0) would be [4, 2, 0]T and would yield the

symbol f(θ) = 2 + 2
√

2 cos(θ). Obviously, the eigenvalues of Tn(f) are the same for
both versions of f.

Example 6 We here return to the Hermitian symbol f (θ) = (2 − 2 cos(θ))2 =
6 − 8 cos(θ) + 2 cos(2θ), as in Example 2. Since we know {Tn(f )}n ∼λ f = f,
employing Algorithm 1 will return as c̃0 an approximation of f, and as c̃k , k > 0 the
expansion functions previously obtained and studied in [3, 13].

In Fig. 10, we show in the left panel the approximated expansion functions
c̃k(θj,n0) for k = 0, . . . , α, computed using n0 = 100, α = 4. Computations are
made with double precision. In the right panel of Fig. 10 we show the absolute error
of the approximation of f, that is, log10 |f(θj,n0) − c̃0(θj,n0)|, for different combina-
tions of n0 and α, both with high precision (128 bit BigFloat) and standard double
precision (Float64). Increasing the precision does not reduce the error, unless the
error is close to machine epsilon (black line for Float64). We note that increasing
α has larger inpact than increasing n0 to reduce the errors.

Fig. 10 [Example 6: Symbol f (θ) = 6−8 cos(θ)+2 cos(2θ)] Left: The approximated expansion functions
c̃k(θj,n0 ), k = 0, . . . , α for n0 = 100 and α = 4. Right: The absolute error log10 |f(θj,n1 ) − c̃0(θj,n1 )|, for
different combinations of n0 and α. All computations made with 128 bit BigFloat (lines) and Float64
(dots)
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Fig. 11 [Example 7: Symbol f (θ) = e−iθ (6 − 8 cos(θ) + 2 cos(2θ))] Left: The approximated expansion
functions c̃k(θj,n0 ), k = 0, . . . , α for n0 = 100 and α = 4. The approximation c̃0(θj,n0 ) overlaps well
with f(θ) = − sin4(θ)/(sin(θ/4) sin3(3θ/4)). Note the erratic behavior of c̃4 close to θ = π . Right: The

absolute value of the approximated first one hundred Fourier coefficients, log10 |˜̂fk |

The erratic behavior of c̃4(θ) close to θ = 0 in the left panel and the increased
error close to to θ = 0 in the right panel are due to the fact that the symbol f violates
the so-called simple-loop conditions, discussed in [3, 13].

Using Algorithm 2, we compute approximations of the Fourier coefficients of the

mononically increasing f to be ˜̂
f0 = 6,

˜̂
f1 = −4, ˜̂

f2 = 1, and ˜̂
fk = 0 for k > 2.

We thus recover the true symbol f(θ) = f (θ) = f̂0 + 2f̂1 cos(θ) + 2f̂2 cos(2θ). If
Algorithm 1 was used to compute c̃k for the monotonically decreasing f instead, the

computed Fourier coefficients would be ˜̂
f0 = 6,

˜̂
f1 = 4, and ˜̂

f2 = 1. In fact, for
f(θ) = 6 ± 8 cos(θ) + 2 cos(2θ), we have the same eigenvalues for Tn(f ) and Tn(f).

Example 7 In this example, we continue the investigation of f (θ) = e−iθ (6 −
8 cos(θ) + 2 cos(2θ)) from Example 3. In Fig. 11, we show in the left panel the
approximated expansion functions c̃k(θj,n0) for n0 = 100 and α = 4. Computations

Table 1 [Example 7: Symbol
f (θ) = e−iθ (6 − 8 cos(θ)

+2 cos(2θ))] First ten true (f̂k)

and computed (˜̂fk) Fourier
coefficients of f.
Approximations computed using
n0 = 100 and α = 4, and 256
bit precision

k f̂k
˜̂
fk

0 −4.000000000000000 −3.999999999436239

1 −2.423215805461417 −2.423215806024005

2 −0.354481702999765 −0.354481702436023

3 0.046583829909932 0.046583829347381

4 −0.013008232443064 −0.013008231879376

5 0.004790313798591 0.004790313236114

6 −0.002068441503570 −0.002068440939976

7 0.000995276400689 0.000995275838326

8 −0.000518988396995 −0.000518987833535

9 0.000288215823752 0.000288215261541
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Fig. 12 [Example 8: Symbol f (θ) = −e−4iθ + 2e−3iθ − 2e−2iθ + 9e−iθ + 7eiθ − e2iθ + e3iθ ] Left: The
approximated expansion functions c̃k(θj,n0 ), k = 0, . . . , α for n0 = 100 and α = 4. The approximation
c̃0(θj,n0 ) corresponds well with λj (T1000(f )) in the right panel of Fig. 7 (since f is unknown). Right: The

absolute value of the approximated first one hundred Fourier coefficients, log10 |˜̂fk |

are made with 256 bit precision and the approximation c̃0(θj,n0) overlaps well with
f, defined in (7). Note the erratic behavior of c̃4 close to θ = π . In the right panel of
Fig. 11, we show the absolute values of the first one hundred approximated Fourier

coefficients ˜̂
fk , given by Algorithm 2. In Table 1, we present the first ten true Fourier

coefficients, f̂k , computed with f defined in (7) and (1), and the approximations ˜̂
fk

from Algorithm 2. Since f is not an RCTP, we can not recover the original simple
expression of the symbol (7), but we can anyway obtain an approximated expression
of f through our Algorithm 2.

Example 8 Finally, we return to the non-symmetric symbol discussed in Example 4,
that is, f (θ) = −e−4iθ + 2e−3iθ − 2e−2iθ + 9e−iθ + 7eiθ − e2iθ + e3iθ . Again,
we employ Algorithms 1 and 2 to study the symbols f and f. In the left panel of

Table 2 [Example 8: Symbol
f (θ)=−e−4iθ+2e−3iθ−2e−2iθ +
9e−1iθ + 7eiθ − e2iθ + e3iθ ]

First ten computed (˜̂fk) Fourier
coefficients of the unknown f.
Approximations computed using
n0 = 100 and α = 4, and 512
bit precision

k ˜̂
fk

0 −0.000000000000003

1 −7.931536795875190

2 −1.429849731406187

3 −1.393034471115375

4 −0.321121280053002

5 0.035288447846840

6 −0.023038821632295

7 0.026692519463291

8 −0.004916206049977

9 −0.006047350374789
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Fig. 12, we present the approximated expansion functions in the working hypothesis,
for n0 = 100 and α = 4. Computations are made with 512 bit precision. The blue
line, c̃0(θj,n0), corresponds to the approximation of the unknown symbol f. Recall
the curve of λj (T1000(f )) in the right panel of Fig. 7, which in principal matches
the current c̃0. Note how all c̃k , for k > 0, are zero in apparently the same point
θ0 ∈ [ 55π

101 , 56π
101 ]. In the right panel of Fig. 12, we see the first one hundred approxi-

mated Fourier coefficients of f, by using Algorithm 2. Table 2 presents the first ten

approximated Fourier coefficients, ˜̂
fk .

5 Conclusions

The working hypothesis in this article concerns the existence of an asymptotic expan-
sion such that there exists a function f describing the eigenvalue distribution of the
Toeplitz matrices Tn(f ) generated by a symbol f . As opposed to previous versions
of matrix-less methods no information of f or f is needed to approximate the expan-
sion functions {f := c0, c1, c2, . . .}. We have shown numerically that we can recover
an approximation of the function f. This is done by a matrix-less method described
in Algorithm 1, which in principle can be modified so as to work without any infor-
mation on f or the way in which the eigenvalues of the smaller versions of Tn(f ) are
computed. Algorithm 1 can also be used to fast and accurately compute the eigen-
values of Tn(f ) for an arbitrarily large order n, as highlighted in (10). However, in
this article, we have focused only on using the obtained approximation of f to find
an approximation of its truncated Fourier series; and if f is an RCTP, we have shown
that we are able to recover the original function f analytically. These approaches can
be a valuable tool for the exploration of the spectrum of Toeplitz and Toeplitz-like
matrices previously not easily understood because of the high computational cost. For
future research, we propose the extension to complex-valued functions f of the results
presented herein, see, e.g., [19] and the recent [9]. Also, the study of non-banded
Toeplitz matrices and matrices more general than Tn(f ) is of interest.
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