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Wealth and income inequality
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1. Introduction

Consider the n × n matrix

Tn,ε,ϕ =

⎡
⎢⎢⎢⎢⎣
ε 1
1 0 1

. . .
. . .

. . .
1 0 1

1 ϕ

⎤
⎥⎥⎥⎥⎦ ,

where ε, ϕ ∈ R are given parameters. For ε, ϕ ∈ {0, 1, −1}, the eigendecomposition of 
Tn,ε,ϕ is already available in the literature. In particular, for (ε, ϕ) = (0, 0), the matrix 
Tn,ε,ϕ = Tn,0,0 is the generator of the τ algebra; its eigendecomposition, as well as 
the eigendecomposition of any tridiagonal Toeplitz matrix, has long been known [9, 
Section 2.2]. For (ε, ϕ) �= (0, 0), the matrix Tn,ε,ϕ is the generator of the so-called τε,ϕ
algebra introduced by Bozzo and Di Fiore in [10]; its eigendecomposition for (ε, ϕ) =
(1, 1), (−1, −1), (1, −1), (−1, 1) was provided in [10, Section 4]. Finally, for (ε, ϕ) =
(1, 0), (0, 1), (−1, 0), (0, −1)—actually for all ε, ϕ ∈ {0, 1, −1}—the eigendecomposition 
of Tn,ε,ϕ was obtained by Losonczi [26, Section 3] along with the eigendecomposition of 
more general tridiagonal matrices. We refer the reader to [12, Appendix 1, pp. 394–395]
for a different approach with respect to Losonczi’s, to the recent survey [15] for a due 
tribute to Losonczi’s pioneering work [26], and to [13,14,16] for further studies on the 
eigenvalues and eigenvectors of special structured tridiagonal matrices.

For all ε, ϕ ∈ R, the asymptotic spectral distribution of Tn,ε,ϕ in Weyl’s sense can be 
easily obtained from the theory of generalized locally Toeplitz sequences [20,21], which 
immediately yields for Tn,ε,ϕ the asymptotic spectral distribution function 2 cos θ. Pre-
cise eigenvalue estimates can also be given on the basis of classical interlacing results 
[23, Section 4.3] after observing that Tn,ε,ϕ is a small-rank perturbation of Tn,0,0 and 
the eigenvalues of Tn,0,0 are known. It should be noted, however, that both asymptotic 
spectral distribution results and interlacing estimates completely ignore the outliers of 
Tn,ε,ϕ, i.e., the eigenvalues lying outside the interval [−2, 2] (the range of 2 cos θ). On the 
other hand, the outliers, which are determined by the parameters ε, ϕ, are precisely the 
objects one is interested in when dealing with several noteworthy applications. Such ap-
plications include, for example, queuing models and Markov chains/processes [3,7,22,25], 
where the eigenvector corresponding to the (unique) outlier of (a suitable transform 
of) Tn,ε,ϕ corresponds to the steady-state distribution of the considered chain/pro-
cess.

In this paper, we study the spectral properties of Tn,ε,ϕ and present a few applica-
tions in the context of Markov chains/processes, with a special focus on queuing models, 
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random walks, diffusion processes and economics issues. The structure of the paper, 
including a summary of our contributions, is given below.

• In Section 2, we study some basic spectral properties of Tn,ε,ϕ that will simplify the 
analysis of later sections.

• In Section 3, we derive the asymptotics of the outliers of Tn,ε,ϕ and the associated 
eigenvectors. Our main results in this regard are Theorems 3.1–3.3, which are illus-
trated through numerical experiments in Tables 3.1–3.3.

• In Section 4, we derive equations for the eigenvalues of Tn,ε,ϕ. For all ε, ϕ ∈ R for 
which these equations can be solved, one obtains not only the eigenvalues but also the 
eigenvectors of Tn,ε,ϕ. Our main results in Section 4 are Theorems 4.1–4.5. It should 
be noted, however, that such results cannot be considered as an original contribution 
of this paper, because they have already been obtained by Losonczi [26], though with 
a different approach and without a focus on the outliers as in Theorems 4.2 and 4.4.

• In Section 5, we solve the equations obtained in Section 4 for specific values of 
ε, ϕ. In particular, we show how it is possible to re-obtain through these equations 
the eigendecomposition of Tn,ε,ϕ for ε, ϕ ∈ {0, 1, −1}; and we address the new case 
εϕ = 1, which is the case of interest for the applications presented in Section 6.

• In Section 6, we present a few applications in the context of Markov chains/processes, 
with a special focus on queuing models, random walks in a multidimensional lattice, 
multidimensional reflected diffusion processes and economics issues. In particular, 
we investigate the implications of our results within a model for wealth/income 
inequality and portfolio dynamics with an arbitrary number of assets: we provide 
analytical formulas for the steady-state (stationary) distribution of the underlying 
stochastic process (a multidimensional reflected diffusion process), we compute the 
convergence speed to the steady state, and we also derive closed-form expressions for 
relevant moments of the stationary distribution such as the average wealth and the 
wealth variance.

• In Section 7, we draw conclusions and outline possible future lines of research.

2. Basic properties of the eigenvalues and eigenvectors of Tn,ε,ϕ

In this section, we collect some basic properties of the eigenvalues and eigenvectors 
of Tn,ε,ϕ which will allow us to tackle the analysis of the next sections with useful a 
priori knowledge. Throughout this paper, the eigenvalues of Tn,ε,ϕ which do not belong 
to [−2, 2] are referred to as outliers. We denote by e1, . . . , en the vectors of the canonical 
basis of Rn, and by En the exchange matrix whose rows are those of the identity matrix 
In in reverse order:

En =

⎡
⎣ 1

. .
.

⎤
⎦ .
1
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Proposition 2.1. The following properties hold.

1. Tn,ϕ,ε = EnTn,ε,ϕEn. Hence, (λ, u) is an eigenpair of Tn,ε,ϕ if and only if (λ, Enu)
is an eigenpair of Tn,ϕ,ε.

2. If ε �= 0 and

vn = [ε−i+1]ni=1 = [1, ε−1, . . . , ε−n+1]�,

then Tn,ε,ϕvn − (ε + ε−1)vn = ε−n(εϕ − 1)en. Similarly, if ϕ �= 0 and

wn = [ϕ−n+i]ni=1 = [ϕ−n+1, . . . , ϕ−1, 1]�,

then Tn,ε,ϕwn − (ϕ + ϕ−1)wn = ϕ−n(εϕ − 1)e1.
3. Tn,ε,ϕ has n real distinct eigenvalues.
4. If |ε|, |ϕ| ≤ 1, then all the eigenvalues of Tn,ε,ϕ belong to [−2, 2].
5. If |ε| ≤ 1, |ϕ| > 1 or |ε| > 1, |ϕ| ≤ 1, then all the eigenvalues of Tn,ε,ϕ belong to 

[−2, 2] except for at most 1 outlier.
6. If |ε|, |ϕ| > 1, then all the eigenvalues of Tn,ε,ϕ belong to [−2, 2] except for at most 2

outliers.
7. If |ε| < 1 or |ϕ| < 1, then both 2 and −2 are not eigenvalues of Tn,ε,ϕ.

Proof. 1. It follows from direct computation.
2. It follows from direct computation.
3. Tn,ε,ϕ is nonderogatory just like any Hessenberg matrix with nonzero subdiagonal 

entries [23, p. 82]. Since Tn,ε,ϕ is also real and symmetric (hence diagonalizable), we infer 
that Tn,ε,ϕ has n real distinct eigenvalues.

4. The result follows immediately from Gershgorin’s theorem [23, Theorem 6.1.1].
5. We prove the statement in the case where |ε| ≤ 1 and |ϕ| > 1 (the proof in the 

other case is identical). Write

Tn,ε,ϕ = Tn,ε,0 + ϕ ene�n .

All the eigenvalues of Tn,ε,0 belong to [−2, 2] by Gershgorin’s theorem. Since the unique 
nonzero eigenvalue of the matrix ϕ ene�n is ϕ, it follows from a classical interlacing 
theorem [23, Corollary 4.3.3] that n − 1 eigenvalues of Tn,ε,ϕ belong to [−2, 2].

6. Write

Tn,ε,ϕ = Tn,0,0 + ε e1e�1 + ϕ ene�n .

All the eigenvalues of Tn,0,0 belong to [−2, 2] by Gershgorin’s theorem. Since the unique 
nonzero eigenvalues of the matrix ε e1e�1 + ϕ ene�n are ε and ϕ, it follows from [23, 
Corollary 4.3.3] that n − 2 eigenvalues of Tn,ε,ϕ belong to [−2, 2].

7. The result follows immediately from the fact that the matrix Tn,ε,ϕ is irreducible 
and from the so-called Gershgorin’s third theorem [8, p. 80]. �



S.-E. Ekström et al. / Linear Algebra and its Applications 627 (2021) 41–71 45
3. Asymptotics of the outliers of Tn,ε,ϕ

If |ε| > 1 and n is large enough, Property 2 of Proposition 2.1 says that (ε + ε−1, vn)
is substantially an eigenpair of Tn,ε,ϕ (it is an exact eigenpair if εϕ = 1). A similar 
consideration applies to (ϕ + ϕ−1, wn). The next theorems formalize this intuition. We 
remark that, for every x > 0,

x + x−1 = 2 cosh(log x) ≥ 2,

with equality holding if and only if x = 1. In what follows, σ(X) denotes the spectrum 
of the matrix X.

Lemma 3.1. The following properties hold.

1. If |ε| > 1, then there exists an eigenvalue μn of Tn,ε,ϕ such that μn → ε + ε−1 as 
n → ∞. Since |ε + ε−1| > 2, the eigenvalue μn is eventually an outlier.

2. If |ϕ| > 1, then there exists an eigenvalue νn of Tn,ε,ϕ such that νn → ϕ + ϕ−1 as 
n → ∞. Since |ϕ + ϕ−1| > 2, the eigenvalue νn is eventually an outlier.

Proof. 1. Let {u1,n, . . . , un,n} be an orthonormal basis of Rn formed by eigenvectors of 
Tn,ε,ϕ with corresponding eigenvalues λ1,n, . . . , λn,n:

Tn,ε,ϕui,n = λi,nui,n, i = 1, . . . , n.

Expand the vector vn = [1, ε−1, . . . , ε−n+1]� on this basis:

vn =
n∑

i=1
αi,nui,n, (3.1)

n∑
i=1

α2
i,n = ‖vn‖2

2 = 1 − ε−2n

1 − ε−2 → 1
1 − ε−2 . (3.2)

The equation Tn,ε,ϕvn − (ε + ε−1)vn = ε−n(εϕ − 1)en in Proposition 2.1 becomes

n∑
i=1

(λi,n − (ε + ε−1))αi,nui,n = ε−n(εϕ− 1)en. (3.3)

Passing to the norms, we obtain

n∑
i=1

(λi,n − (ε + ε−1))2α2
i,n = ε−2n(εϕ− 1)2 → 0. (3.4)

If we assume by contradiction that dist(σ(Tn,ε,ϕ), ε + ε−1) = mini=1,...,n |λi,n − (ε +
ε−1)| �→ 0 as n → ∞, then there exists a positive constant c such that
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Table 3.1
Illustration of Theorem 3.1 in the case ε = 3 and ϕ = 1/2 where ε + ε−1 = 3.3. 
For every n we have denoted by μn the unique outlier of Tn,ε,ϕ and by xn the 
corresponding normalized eigenvector computed by Julia.

n outlier μn |μn − (ε + ε−1)| ‖xn − Pvn
xn‖2

8 3.3333333663723654 3.3 · 10−8 3.0 · 10−5

16 3.3333333333333341 7.7 · 10−16 4.6 · 10−9

32 3.3333333333333333 4.1 · 10−31 1.1 · 10−16

64 3.3333333333333333 1.2 · 10−61 5.8 · 10−32

128 3.3333333333333333 1.0 · 10−122 1.7 · 10−62

dist(σ(Tn,ε,ϕ), ε + ε−1) ≥ c

frequently as n → ∞, hence

n∑
i=1

(λi,n − (ε + ε−1))2α2
i,n ≥ c2

n∑
i=1

α2
i,n = c2‖vn‖2

2 ≥ c2

frequently as n → ∞, which is a contradiction to (3.4). We conclude that dist(σ(Tn,ε,ϕ), ε
+ ε−1) → 0 as n → ∞, which is the thesis.

2. It follows from item 1 applied to Tn,ϕ,ε, taking into account that σ(Tn,ϕ,ε) =
σ(Tn,ε,ϕ) by Proposition 2.1. �

If x, y ∈ Rn, we set (x, y) = x�y. If u ∈ Rn, we denote by Pu the orthogonal 
projector onto the subspace 〈u〉 generated by u. In the case where u �= 0, the projector 
Pu is explicitly given by

Pux = (x,u)
(u,u) u, x ∈ Rn.

Theorem 3.1. Suppose that |ε| > 1 and ϕ �= ε. Let (μn, xn) be an eigenpair of Tn,ε,ϕ such 
that μn → ε + ε−1 as n → ∞ and ‖xn‖2 = 1 for all n. Then, the following properties 
hold.

1. Eventually, μn is an outlier of Tn,ε,ϕ and any other eigenvalue λn ∈ σ(Tn,ε,ϕ) satis-
fies |λn − (ε + ε−1)| ≥ c for some positive constant c independent of n.

2. ‖xn − Pvn
xn‖2 → 0 as n → ∞, where vn = [1, ε−1, . . . , ε−n+1]�.

Proof. 1. If |ϕ| ≤ 1, then all eigenvalues of Tn,ε,ϕ belong to [−2, 2] except for at most 1 
outlier (by Proposition 2.1). Since μn → ε + ε−1 /∈ [−2, 2], it is clear that μn coincides 
eventually with the unique outlier of Tn,ε,ϕ. Moreover, any other eigenvalue λn of Tn,ε,ϕ

satisfies the inequality |λn − (ε + ε−1)| ≥ c with

c = dist(ε + ε−1, [−2, 2]).
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If |ϕ| > 1, then all eigenvalues of Tn,ε,ϕ belong to [−2, 2] except for at most 2 outliers (by 
Proposition 2.1) and there exists an eigenvalue νn of Tn,ε,ϕ such that νn → ϕ + ϕ−1 /∈
[−2, 2] (by Lemma 3.1). Since μn → ε + ε−1 /∈ [−2, 2] and ε + ε−1 �= ϕ + ϕ−1 (because 
ϕ �= ε by assumption), it is clear that, eventually, μn �= νn and μn, νn are the unique two 
outliers of Tn,ε,ϕ. Moreover, any eigenvalue λn of Tn,ε,ϕ with λn �= μn satisfies eventually 
the inequality |λn − (ε + ε−1)| ≥ c with

c = dist(ε + ε−1, [−2, 2] ∪ [ϕ + ϕ−1 − δ, ϕ + ϕ−1 + δ]),

where δ is a fixed positive constant chosen so that ε + ε−1 /∈ [ϕ +ϕ−1 − δ, ϕ +ϕ−1 + δ].
2. Let {u1,n, . . . , un,n = xn} be an orthonormal basis of Rn formed by eigenvectors 

of Tn,ε,ϕ with corresponding eigenvalues λ1,n, . . . , λn,n = μn:

Tn,ε,ϕui,n = λi,nui,n, i = 1, . . . , n.

We expand the vector vn on this basis as in (3.1) and we get (3.2)–(3.4). By item 1, we 
eventually have

n∑
i=1

(λi,n − (ε + ε−1))2α2
i,n ≥ c2

n−1∑
i=1

α2
i,n + (μn − (ε + ε−1))2α2

n,n. (3.5)

Hence, by (3.2) and (3.4),

n−1∑
i=1

α2
i,n → 0, α2

n,n → 1
1 − ε−2 . (3.6)

Keeping in mind (3.1), (3.2) and (3.6), we obtain

‖xn − Pvn
xn‖2

2 = ‖un,n − Pvn
un,n‖2

2 =
∥∥∥∥un,n − (un,n,vn)

(vn,vn) vn

∥∥∥∥
2

2

=

∥∥∥∥∥un,n − αn,n

‖vn‖2
2

n∑
i=1

αi,nui,n

∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

1 −
α2
n,n

‖vn‖2
2

)
un,n + αn,n

‖vn‖2
2

n−1∑
i=1

αi,nui,n

∥∥∥∥∥
2

2

=
(

1 −
α2
n,n

‖vn‖2
2

)2

+
α2
n,n

‖vn‖4
2

n−1∑
i=1

α2
i,n → 0, (3.7)

which concludes the proof. �
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Table 3.2
Illustration of Theorems 3.1 and 3.2 in the case ε = 4 and ϕ = −2 where ε + ε−1 = 4.25
and ϕ + ϕ−1 = −2.5. For every n we have denoted by μn, νn the unique two outliers of 
Tn,ε,ϕ and by xn, yn the corresponding normalized eigenvectors computed by Julia. We 
have called μn the outlier closest to ε + ε−1 and νn the other outlier.

n outlier μn |μn − (ε + ε−1)| ‖xn − Pvn
xn‖2

outlier νn |νn − (ϕ + ϕ−1)| ‖yn − Pwn
yn‖2

8 4.2499999950887285 4.9 · 10−9 2.3 · 10−5

−2.4999484772090417 5.2 · 10−5 5.9 · 10−3

16 4.2500000000000000 1.1 · 10−18 3.5 · 10−10

−2.4999999992141966 7.9 · 10−10 2.3 · 10−5

32 4.2500000000000000 6.2 · 10−38 8.1 · 10−20

−2.5000000000000000 1.8 · 10−19 3.5 · 10−10

64 4.2500000000000000 1.8 · 10−76 4.4 · 10−39

−2.5000000000000000 9.9 · 10−39 8.1 · 10−20

128 4.2500000000000000 1.6 · 10−153 1.3 · 10−77

−2.5000000000000000 2.9 · 10−77 4.4 · 10−39

The next theorem is completely analogous to Theorem 3.1 and can be proved by the 
same type of argument or by using the relation between Tn,ε,ϕ and Tn,ϕ,ε (see Proposi-
tion 2.1).

Theorem 3.2. Suppose that |ϕ| > 1 and ε �= ϕ. Let (νn, yn) be an eigenpair of Tn,ε,ϕ such 
that νn → ϕ + ϕ−1 as n → ∞ and ‖yn‖2 = 1 for all n. Then, the following properties 
hold.

1. Eventually, νn is an outlier of Tn,ε,ϕ and any other eigenvalue λn ∈ σ(Tn,ε,ϕ) satisfies 
|λn − (ϕ + ϕ−1)| ≥ c for some positive constant c independent of n.

2. ‖yn − Pwn
yn‖2 → 0 as n → ∞, where wn = [ϕ−n+1, . . . , ϕ−1, 1]�.

To conclude our analysis, we address the case where |ε|, |ϕ| > 1 and ε = ϕ.

Theorem 3.3. Suppose that |ε|, |ϕ| > 1 and ε = ϕ. Then, the following properties hold.

1. There exist exactly two distinct eigenvalues μn, νn of Tn,ε,ϕ which are eventually the 
unique two outliers of Tn,ε,ϕ and satisfy μn, νn → ε + ε−1 = ϕ + ϕ−1.

2. Let xn and yn be eigenvectors of Tn,ε,ϕ associated with μn and νn, respectively, and 
satisfying ‖xn‖2 = ‖yn‖2 = 1 for all n. Then, up to a renaming of μn and νn, we 
eventually have Enxn = xn and Enyn = −yn. Moreover, ‖xn − Pvn+wn

xn‖2 → 0
and ‖yn − Pvn−wn

yn‖2 → 0 as n → ∞, where vn = [1, ε−1, . . . , ε−n+1]� and wn =
[ϕ−n+1, . . . , ϕ−1, 1]� = Envn.

Proof. 1. We first recall that all eigenvalues of Tn,ε,ϕ are distinct by Proposition 2.1. 
Also, an eigenvalue converging to ε + ε−1 exists for sure by Lemma 3.1 and more than 
two eigenvalues converging to ε +ε−1 cannot exist by Proposition 2.1 as ε +ε−1 /∈ [−2, 2]. 
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Suppose by contradiction that there exists a unique eigenvalue μn converging to ε + ε−1

and let xn be a corresponding eigenvector with ‖xn‖2 = 1. Let {u1,n, . . . , un,n = xn}
be an orthonormal basis of Rn formed by eigenvectors of Tn,ε,ϕ with corresponding 
eigenvalues λ1,n, . . . , λn,n = μn:

Tn,ε,ϕui,n = λi,nui,n, i = 1, . . . , n.

We expand the vector vn on this basis as in (3.1) and we get (3.2)–(3.4). Since μn is the 
unique eigenvalue of Tn,ε,ϕ converging to ε +ε−1 /∈ [−2, 2] and n −2 eigenvalues of Tn,ε,ϕ

belong to [−2, 2] for all n, there exists a positive constant c independent of n such that

n∑
i=1

(λi,n − (ε + ε−1))2α2
i,n ≥ c2

n−1∑
i=1

α2
i,n + (μn − (ε + ε−1))2α2

n,n (3.8)

frequently as n → ∞. Passing to a subsequence of indices n, if necessary, we may assume 
that (3.8) is satisfied for all n. Note that (3.8) is the same as (3.5). Hence, by reasoning 
as before, we infer that (3.6)–(3.7) hold and we conclude that ‖xn − Pvn

xn‖2 → 0 (for 
the considered subsequence of indices n). This is impossible for the following reasons.

• Since ε = ϕ, we have Tn,ε,ϕ = Tn,ϕ,ε and, by Proposition 2.1, (λ, u) is an eigenpair 
of Tn,ε,ϕ if and only if the same is true for (λ, Enu).

• By Proposition 2.1, each eigenvalue λ of Tn,ε,ϕ is simple and so Enu = ±u for all 
eigenvectors u of Tn,ε,ϕ. In particular Enxn = ±xn for all n.

• If ‖xn −Pvn
xn‖2 → 0, then the relation Enxn = ±xn cannot hold for all n. Indeed, 

considering that Pvn
xn = cnvn is a multiple of vn, from ‖xn − Pvn

xn‖2 → 0 and 
‖xn‖2 = 1 we deduce that ‖Pvn

xn‖2 = |cn| ‖vn‖2 → 1, i.e., cn → 1 − ε−2 (see (3.2)), 
and

|(xn)1 − (Pvn
xn)1| = |(xn)1 − cn| → 0,

|(xn)n − (Pvn
xn)n| = |(xn)n − cnε

−n+1| → 0,

which are clearly incompatible with Enxn = ±xn as the latter implies (xn)n =
±(xn)1.

2. Let {u1,n, . . . , un−1,n = xn, un,n = yn} be an orthonormal basis of Rn formed by 
eigenvectors of Tn,ε,ϕ with corresponding eigenvalues λ1,n, . . . , λn−1,n = μn, λn,n = νn:

Tn,ε,ϕui,n = λi,nui,n, i = 1, . . . , n.

Expand the vectors vn + wn and vn − wn on this basis:

vn + wn =
n∑

ρi,nui,n, (3.9)

i=1
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vn − wn =
n∑

i=1
τi,nui,n, (3.10)

n∑
i=1

ρ2
i,n = ‖vn + wn‖2

2 = 2 1 − ε−2n

1 − ε−2 + 2nε−n+1 → 2
1 − ε−2 , (3.11)

n∑
i=1

τ2
i,n = ‖vn − wn‖2

2 = 2 1 − ε−2n

1 − ε−2 − 2nε−n+1 → 2
1 − ε−2 . (3.12)

Keeping in mind that ε = ϕ, the equations

Tn,ε,ϕvn − (ε + ε−1)vn = ε−n(εϕ− 1)en,

Tn,ε,ϕwn − (ϕ + ϕ−1)wn = ϕ−n(εϕ− 1)e1

in Proposition 2.1 yield

Tn,ε,ϕ(vn + wn) − (ε + ε−1)(vn + wn) = ε−n(εϕ− 1)(en + e1),

Tn,ε,ϕ(vn − wn) − (ε + ε−1)(vn − wn) = ε−n(εϕ− 1)(en − e1),

i.e.,

n∑
i=1

(λi,n − (ε + ε−1))ρi,nui,n = ε−n(εϕ− 1)(en + e1),

n∑
i=1

(λi,n − (ε + ε−1))τi,nui,n = ε−n(εϕ− 1)(en − e1).

Passing to the norms, we obtain

n∑
i=1

(λi,n − (ε + ε−1))2ρ2
i,n = 2ε−2n(εϕ− 1)2 → 0, (3.13)

n∑
i=1

(λi,n − (ε + ε−1))2τ2
i,n = 2ε−2n(εϕ− 1)2 → 0. (3.14)

Since μn, νn are eventually the unique two outliers of Tn,ε,ϕ, the other n − 2 eigenvalues 
λ1,n, . . . , λn−2,n eventually belong to [−2, 2] and from (3.11)–(3.14) we infer that

n−2∑
i=1

ρ2
i,n → 0, ρ2

n−1,n + ρ2
n,n → 2

1 − ε−2 , (3.15)

n−2∑
i=1

τ2
i,n → 0, τ2

n−1,1 + τ2
n,n → 2

1 − ε−2 . (3.16)
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Table 3.3
Illustration of Theorem 3.3 in the case ε = ϕ = 8/5 where ε + ε−1 = ϕ +ϕ−1 = 2.225. 
For every n we have denoted by μn, νn the unique two outliers of Tn,ε,ϕ and by xn, yn

the corresponding normalized eigenvectors computed by Julia. We have called μn the 
outlier whose eigenvector xn is the closest to its projection onto 〈vn +wn〉 and νn the 
other outlier. We have numerically verified that, up to rounding errors, Enxn = xn

and Enyn = −yn for all the considered n.

n outlier μn |μn − (ε + ε−1)| ‖xn − Pvn+wn
xn‖2

outlier νn |νn − (ϕ + ϕ−1)| ‖yn − Pvn−wn
yn‖2

8 2.2447548446486838 2.0 · 10−2 2.1 · 10−2

2.1991364375014231 2.6 · 10−2 1.2 · 10−2

16 2.2255116405185864 5.1 · 10−4 5.9 · 10−4

2.2244808853312168 5.2 · 10−5 4.9 · 10−4

32 2.2250002793612006 2.8 · 10−7 2.9 · 10−7

2.2249997206340419 2.8 · 10−7 2.9 · 10−7

64 2.2250000000000821 8.2 · 10−14 8.6 · 10−14

2.2249999999999180 8.2 · 10−14 8.6 · 10−14

128 2.2250000000000000 7.1 · 10−27 7.5 · 10−27

2.2250000000000000 7.1 · 10−27 7.5 · 10−27

Now, recall from the proof of item 1 that (in the present case where ε = ϕ) all eigenvectors 
u of Tn,ε,ϕ satisfy Enu = ±u. Since En(vn +wn) = vn +wn and E(vn−wn) = −(vn−
wn), for the eigenvectors ui,n satisfying Enui,n = ui,n we have τi,n = 0 in the expansion 
(3.10), and for the eigenvectors ui,n satisfying Enui,n = −ui,n we have ρi,n = 0 in the 
expansion (3.9). It follows that, eventually, one among xn and yn (say xn) must satisfy 
Enxn = xn and the other (say yn) must satisfy the “opposite” equation Enyn = −yn. 
Indeed, if we frequently had Enxn = xn and Enyn = yn, then we would also have 
τn−1,n = τn,n = 0 frequently, which is impossible by (3.16). Similarly, if we frequently 
had Enxn = −xn and Enyn = −yn, then we would also have ρn−1,n = ρn,n = 0
frequently, which is impossible by (3.15). By renaming μn and νn (if necessary), we can 
assume that the eigenvector xn associated with μn eventually satisfies Enxn = xn, and 
the eigenvector yn associated with νn eventually satisfies Enyn = −yn. In particular, 
we eventually have

ρn,n = 0, (3.17)

τn−1,n = 0. (3.18)

Thus, by applying (3.9), (3.11), (3.15) and (3.17), we eventually obtain

‖xn − Pvn+wn
xn‖2

2 = ‖un−1,n − Pvn+wn
un−1,n‖2

2

=
∥∥∥∥un−1,n − (un−1,n,vn + wn)

(vn + wn,vn + wn) (vn + wn)
∥∥∥∥

2

2

=

∥∥∥∥∥un−1,n − ρn−1,n

‖vn + wn‖2
2

n∑
ρi,nui,n

∥∥∥∥∥
2

i=1 2
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=

∥∥∥∥∥
(

1 −
ρ2
n−1,n

‖vn + wn‖2
2

)
un−1,n − ρn−1,n

‖vn + wn‖2
2

n−2∑
i=1

ρi,nui,n

∥∥∥∥∥
2

2

=
(

1 −
ρ2
n−1,n

‖vn + wn‖2
2

)2

+
ρ2
n−1,n

‖vn + wn‖4
2

n−2∑
i=1

ρ2
i,n → 0.

Similarly, one can show that ‖yn − Pvn−wn
yn‖2

2 → 0. �
In Tables 3.1–3.3, we illustrate through numerical experiments the results presented 

in Theorems 3.1–3.3. The experiments have been performed via the high-performance 
computing language Julia [6] with a machine precision equal to 1.1 · 10−308 (1024-bit 
precision). We note that the convergences predicted by Theorems 3.1–3.3 are quite fast. 
Actually, this could be expected on the basis of Property 2 in Proposition 2.1, where 
we see that for |ε|, |ϕ| > 1 the pairs (ε + ε−1, vn) and (ϕ + ϕ−1, wn) are substantially 
eigenpairs of Tn,ε,ϕ already for moderate n due to the exponential convergence to 0 of 
the error terms ε−n(εϕ − 1)en and ϕ−n(εϕ − 1)e1.

4. Equations for the eigenvalues and eigenvectors of Tn,ε,ϕ

In this section, we derive equations for the eigenvalues of Tn,ε,ϕ. As we shall see, the 
equations for the outliers are formally the same as the equations for the non-outliers with 
the only difference that the trigonometric functions sinx and cosx must be replaced by 
the corresponding hyperbolic functions sinhx and cosh x. For all ε, ϕ ∈ R for which these 
equations can be solved, one obtains not only the eigenvalues but also the eigenvectors 
of Tn,ε,ϕ. It should be noted that the results presented in this section have already 
been obtained in a more general framework by Losonczi [26], though with a different 
approach and without a focus on the outliers; in particular, Losonczi does not introduce 
the hyperbolic functions sinhx and cosh x. A special role in the following derivation is 
played by the theory of linear difference equations [24].

Let λ ∈ R and v ∈ Cn\{0}, so that (λ, v) is a candidate eigenpair for the real 
symmetric matrix Tn,ε,ϕ. We have

Tn,ε,ϕv = λv ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

εv1 + v2 = λv1

vi−1 + vi+1 = λvi for all i = 2, . . . , n− 1

vn−1 + ϕvn = λvn

⇐⇒ exists a sequence (w0, w1, . . .) such that wi = vi for i = 1, . . . , n and⎧⎪⎪⎨
⎪⎪⎩

w0 = εw1

wi−1 + wi+1 = λwi for all i ≥ 1

wn+1 = ϕwn

(4.1)

The characteristic equation of the linear difference equation (4.1) is given by
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x2 − λx + 1 = 0. (4.2)

We consider five different cases.

4.1. Case 1: λ ∈ (−2, 2)

In this case, we set λ = 2 cos θ with θ ∈ (0, π). The roots of the characteristic equation 
(4.2) are given by

λ±
√
λ2 − 4
2 = 2 cos θ ± 2i sin θ

2 = e±iθ,

and they are distinct because θ ∈ (0, π). The general solution of (4.1) is given by

wi = Aeiiθ + Be−iiθ for all i ≥ 0,

where A, B ∈ C are arbitrary constants. Keeping in mind that v �= 0, we have

Tn,ε,ϕv = λv ⇐⇒ exists a sequence (w0, w1, . . .) such that wi = vi for i = 1, . . . , n and⎧⎪⎪⎨
⎪⎪⎩

wi = Aeiiθ + Be−iiθ for all i ≥ 0

A + B = εAeiθ + εBe−iθ

Aei(n+1)θ + Be−i(n+1)θ = ϕAeinθ + ϕBe−inθ

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vi = Aeiiθ + Be−iiθ for all i = 1, . . . , n

A = εe−iθ − 1
1 − εeiθ B (1 − εeiθ �= 0 because θ ∈ (0, π))

0 =

∣∣∣∣∣ 1 − εeiθ 1 − εe−iθ

einθ(eiθ − ϕ) e−inθ(e−iθ − ϕ)

∣∣∣∣∣

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vi = B
(εe−iθ − 1

1 − εeiθ eiiθ + e−iiθ
)

= 2iB
εeiθ − 1

(
sin(iθ) − ε sin((i− 1)θ)

)
for all i = 1, . . . , n

0 = sin((n + 1)θ) − (ε + ϕ) sin(nθ) + εϕ sin((n− 1)θ)

We summarize in the next theorem the result that we have obtained.

Theorem 4.1. For every θ ∈ (0, π), the number λ = 2 cos θ is an eigenvalue of Tn,ε,ϕ if 
and only if

sin((n + 1)θ) − (ε + ϕ) sin(nθ) + εϕ sin((n− 1)θ) = 0. (4.3)

In this case, a corresponding eigenvector v = (v1, . . . , vn) is given by
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vi = sin(iθ) − ε sin((i− 1)θ), i = 1, . . . , n.

4.2. Case 2: λ ∈ (2, ∞)

In this case, we set λ = 2 cosh θ with θ ∈ (0, ∞). The roots of the characteristic 
equation (4.2) are given by

λ±
√
λ2 − 4
2 = 2 cosh θ ± 2 sinh θ

2 = e±θ,

and they are distinct because θ ∈ (0, ∞). The general solution of (4.1) is given by

wi = Aeiθ + Be−iθ for all i ≥ 0,

where A, B ∈ C are arbitrary constants. Keeping in mind that v �= 0, we have

Tn,ε,ϕv = λv ⇐⇒ exists a sequence (w0, w1, . . .) such that wi = vi for i = 1, . . . , n and⎧⎪⎪⎨
⎪⎪⎩

wi = Aeiθ + Be−iθ for all i ≥ 0

A + B = εAeθ + εBe−θ

Ae(n+1)θ + Be−(n+1)θ = ϕAenθ + ϕBe−nθ

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi = Aeiθ + Be−iθ for all i = 1, . . . , n

A + B = εAeθ + εBe−θ

(this equation is not identically 0 because

1 − εeθ = 0 =⇒ 1 − εe−θ �= 0)

0 =

∣∣∣∣∣ 1 − εeθ 1 − εe−θ

enθ(eθ − ϕ) e−nθ(e−θ − ϕ)

∣∣∣∣∣

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

vi = Aeiθ + Be−iθ for all i = 1, . . . , n

A + B = εAeθ + εBe−θ

0 = sinh((n + 1)θ) − (ε + ϕ) sinh(nθ) + εϕ sinh((n− 1)θ)

• If 1 − εeθ = 0, i.e., e−θ = ε, then the equation A + B = εAeθ + εBe−θ is equivalent 
to B = 0 and so

Tn,ε,ϕv = λv ⇐⇒
{
vi = Aeiθ = Aε−i for all i = 1, . . . , n

0 = sinh((n + 1)θ) − (ε + ϕ) sinh(nθ) + εϕ sinh((n− 1)θ)

• If 1 − εeθ �= 0, then the equation A + B = εAeθ + εBe−θ is equivalent to A =
εe−θ − 1

θ
B and so
1 − εe
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Tn,ε,ϕv = λv ⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vi = B
(εe−θ − 1

1 − εeθ eiθ + e−iθ
)

= 2B
εeθ − 1

(
sinh(iθ) − ε sinh((i− 1)θ)

)
for all i = 1, . . . , n

0 = sinh((n + 1)θ) − (ε + ϕ) sinh(nθ) + εϕ sinh((n− 1)θ)

As often happens in mathematics, the “limit” case 1 − εeθ = 0 merges with the case 
1 − εeθ �= 0. Indeed, if 1 − εeθ = 0, then ε = e−θ ∈ (0, 1) (because θ ∈ (0, ∞)) and

sinh(iθ) − ε sinh((i− 1)θ) = 1 − ε2

2 ε−i, i = 1, . . . , n.

We summarize in the next theorem the result that we have obtained.

Theorem 4.2. For every θ ∈ (0, ∞), the number λ = 2 cosh θ is an eigenvalue of Tn,ε,ϕ if 
and only if

sinh((n + 1)θ) − (ε + ϕ) sinh(nθ) + εϕ sinh((n− 1)θ) = 0. (4.4)

In this case, a corresponding eigenvector v = (v1, . . . , vn) is given by

vi = sinh(iθ) − ε sinh((i− 1)θ), i = 1, . . . , n.

4.3. Case 3: λ = 2

In this case, the characteristic equation (4.2) has only one root x = 1 with multiplicity 
2. The general solution of (4.1) is given by

wi = A + Bi for all i ≥ 0,

where A, B ∈ C are arbitrary constants. Following the same line of argument as in 
Sections 4.1–4.2, we obtain the following result.

Theorem 4.3. The number λ = 2 is an eigenvalue of Tn,ε,ϕ if and only if

n + 1 − (ε + ϕ)n + εϕ(n− 1) = 0. (4.5)

In this case, a corresponding eigenvector v = (v1, . . . , vn) is given by

vi = ε + (1 − ε)i, i = 1, . . . , n.
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4.4. Case 4: λ ∈ (−∞, −2)

In this case, we set λ = −2 cosh θ with θ ∈ (0, ∞). The derivation is essentially the 
same as in Section 4.2; we leave the details to the reader and we report the analog of 
Theorem 4.2.

Theorem 4.4. For every θ ∈ (0, ∞), the number λ = −2 cosh θ is an eigenvalue of Tn,ε,ϕ

if and only if

sinh((n + 1)θ) + (ε + ϕ) sinh(nθ) + εϕ sinh((n− 1)θ) = 0. (4.6)

In this case, a corresponding eigenvector v = (v1, . . . , vn) is given by

vi = (−1)i
(
sinh(iθ) + ε sinh((i− 1)θ)

)
, i = 1, . . . , n.

4.5. Case 5: λ = −2

The derivation is essentially the same as in Section 4.3; we leave the details to the 
reader and we report the analog of Theorem 4.3.

Theorem 4.5. The number λ = −2 is an eigenvalue of Tn,ε,ϕ if and only if

n + 1 + (ε + ϕ)n + εϕ(n− 1) = 0. (4.7)

In this case, a corresponding eigenvector v = (v1, . . . , vn) is given by

vi = (−1)i
(
−ε + (1 + ε)i

)
, i = 1, . . . , n.

5. Eigendecomposition of Tn,ε,ϕ for specific choices of ε and ϕ

5.1. ε, ϕ ∈ {0, 1, −1}

As noted in the introduction, the eigendecomposition of Tn,ε,ϕ for ε, ϕ ∈ {0, 1, −1}
is already available in the literature. The purpose of this section is simply to show 
that it can also be obtained from Theorems 4.1, 4.3, and 4.5. Note that Theorems 4.2
and 4.4 are useless in this case as Tn,ε,ϕ does not have outliers for ε, ϕ ∈ {0, 1, −1}; see 
Proposition 2.1.

For (ε, ϕ) = (0, 0), Theorem 4.1 immediately yields the eigenpairs (λk, v(k)), k =
1, . . . , n, with

λk = 2 cos θk, v(k) =
[
sin(iθk)

]n
i=1, θk = kπ

.

n + 1



S.-E. Ekström et al. / Linear Algebra and its Applications 627 (2021) 41–71 57
For (ε, ϕ) = (1, 1), using sine addition/subtraction formulas, we see that equation (4.3)
is equivalent to

sin(nθ)(2 cos θ − 2) = 0,

whose solutions in (0, π) are θk = kπ
n , k = 1, . . . , n − 1; moreover, equation (4.5) is 

satisfied. Since, by prosthaphaeresis formulas,

sin(iθ) − sin((i− 1)θ) = 2 sin θ

2 cos (2i− 1)θ
2 ,

we conclude by Theorems 4.1 and 4.3 that, for (ε, ϕ) = (1, 1), a complete set of eigenpairs 
for Tn,ε,ϕ = Tn,1,1 is given by (λk, v(k)), k = 0, . . . , n − 1, with

λk = 2 cos θk, v(k) =
[
cos (2i− 1)θk

2

]n
i=1

, θk = kπ

n
.

Similar derivations, using sine addition/subtraction and prosthaphaeresis formulas, can 
be done for all ε, ϕ ∈ {0, 1, −1}; we leave the details to the reader.

5.2. εϕ = 1

We focus in this section on the case εϕ = 1, which is crucial for the applications 
presented in Section 6. To the best of the authors’ knowledge, this case has never been 
addressed in the literature. Besides εϕ = 1, we also assume that:

• ε, ϕ > 0 (because no additional difficulties are encountered if ε, ϕ < 0);
• ε, ϕ �= 1 (because the case ε = ϕ = 1 has already been addressed in Section 5.1).

Under these assumptions, we have

ε + ϕ

2 = ε + ε−1

2 = cosh(log ε) > 1.

Using sine addition/subtraction formulas, we see that equation (4.3) is equivalent to

sin(nθ)
(
cos θ − ε + ε−1

2

)
= 0,

whose solutions in (0, π) are θk = kπ
n , k = 1, . . . , n − 1. Thus, Theorem 4.1 yields n − 1

eigenpairs of Tn,ε,ϕ, i.e., (λk, v(k)), k = 1, . . . , n − 1, with

λk = 2 cos θk, v(k) =
[
sin(iθk) − ε sin((i− 1)θk)

]n
, θk = kπ

.

i=1 n
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We still have to find one eigenvalue, which can be neither 2 nor −2 because, under our 
assumptions, equations (4.5) and (4.7) are not satisfied. In other words, the eigenvalue 
we are looking for is an outlier. Since equation (4.4) is equivalent to

sinh(nθ)
(
cosh θ − ε + ε−1

2

)
= 0,

it has a unique solution in (0, ∞) given by θ = | log ε|. We then obtain the outlier λ and 
the corresponding eigenvector v from Theorem 4.2:

λ = 2 cosh θ, v =
[
sinh(iθ) − ε sinh((i− 1)θ)

]n
i=1, θ = | log ε|.

After straightforward manipulations, involving also a renormalization of v, we get for 
the outlier eigenpair (λ, v) the following simplified expressions:

λ = ε + ε−1 = ϕ + ϕ−1 = ε + ϕ, v =
[
ε−i+1]n

i=1 =
[
ϕi−1]n

i=1.

Note that this outlier eigenpair could also be obtained from Property 2 of Proposition 2.1. 
In conclusion, if we set

Vn,ε =
[
v
∣∣ v(1) ∣∣ · · · v(n−1) ],

then the eigendecomposition of Tn,ε,ϕ is given by

Tn,ε,ϕ = Vn,ε

⎡
⎢⎢⎢⎢⎢⎣

ε + ε−1

2 cos π
n

2 cos 2π
n

. . .

2 cos (n−1)π
n

⎤
⎥⎥⎥⎥⎥⎦V

−1
n,ε .

6. Applications

In this section, we present a few applications of our results in the context of Markov 
chains and processes. Section 6.1 deals with a queuing model. Sections 6.2 and 6.3 are 
devoted to random walks in unidimensional and multidimensional lattices, respectively. 
Finally, Sections 6.4 and 6.5 focus on multidimensional reflected diffusion processes and 
related economics applications.

6.1. Queuing model

Consider a continuous-time Markov chain with n states 0, . . . , n −1 and with transition 
rate matrix (infinitesimal generator) given by
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Qn,λ,μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ λ

μ −λ− μ λ

. . .
. . .

. . .

μ −λ− μ λ

μ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6.1)

where λ, μ > 0. Markov chains of this kind are referred to as M/M/1/K queues (with 
K = n − 1). They find applications in queuing theory [7,22,25], especially in telecommu-
nications [22, Section 5.7]. In this section, we derive the eigendecomposition of Q�

n,λ,μ. 
Note that for λ = μ the eigendecomposition is already known [13,26]. We begin with the 
following lemma, which can be proved by direct computation; see also [28].

Lemma 6.1. Let

T =

⎡
⎢⎢⎢⎢⎢⎣

a1 b1
c1 a2 b2

c2
. . .

. . .
. . .

. . . bn−1
cn−1 an

⎤
⎥⎥⎥⎥⎥⎦

be a real tridiagonal matrix such that bici > 0 for all i = 1, . . . , n − 1. Then

T = D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
√
b1c1

√
b1c1 a2

√
b2c2

√
b2c2

. . .
. . .

. . .
. . .

√
bn−1cn−1√

bn−1cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D−1,

where D = diag
(

1, 
√

c1
b1
, 
√

c1c2
b1b2

, . . . , 
√

c1 · · · cn−1

b1 · · · bn−1

)
.

By applying Lemma 6.1 to the matrix Q�
n,λ,μ, we obtain

Q�
n,λ,μ = Dn,λ,μXn,λ,μD

−1
n,λ,μ,

where

Dn,λ,μ = diag(1, τ, τ2, . . . , τn−1), τ =

√
λ

μ
,
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Xn,λ,μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ
√
λμ

√
λμ −λ− μ

√
λμ

. . .
. . .

. . .
√
λμ −λ− μ

√
λμ

√
λμ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A direct verification shows that

Xn,λ,μ = (−λ− μ)In +
√

λμTn,ε,ϕ with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε = τ−1 =

√
μ

λ
,

ϕ = τ =
√

λ

μ
.

Since εϕ = 1, the eigendecomposition of Xn,λ,μ (and hence also of Q�
n,λ,μ) is immediately 

obtained from the results in Section 5.2. In particular, the eigenpairs of Q�
n,λ,μ are given 

by (νk, wk), k = 0, . . . , n − 1, where

ν0 = 0, w0 =
[
1, τ2, τ4, . . . , τ2n−2]�, (6.2)

and, for k = 1, . . . , n − 1,

νk = −λ− μ + 2
√
λμ cos θk, wk =

[
τ i−1 sin(iθk) − τ i−2 sin((i− 1)θk)

]n
i=1,

θk = kπ

n
.

(6.3)

Remark 6.1 (Steady-State Distribution). Since

‖w0‖1 =
n−1∑
i=0

τ2i = 1 − τ2n

1 − τ2 = 1 − ρn

1 − ρ
, ρ = τ2,

the steady-state (or stationary/limiting) distribution of the considered queuing model, 
i.e., the normalized positive eigenvector of Q�

n,λ,μ associated with the eigenvalue 0, is 
given by

w0

‖w0‖1
= 1 − ρ

1 − ρn
[
1, ρ, ρ2, . . . , ρn−1]�,

where it is understood that in the case ρ = 1 we take the limit ρ → 1. For a different 
derivation, see [22, Section 5.7].

Remark 6.2 (Second Eigenvalue). It is clear from (6.3) and the inequality 
√
λμ ≤ 1

2 (λ +μ)
that all nonzero eigenvalues of Q�

n,λ,μ are negative. The largest of them is ν1 = −λ −μ +
2
√
λμ cos π . This second eigenvalue gives information about the convergence speed to the 
n
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Fig. 6.1. Random walk in a unidimensional lattice.

steady-state distribution of power methods [8, p. 371]; see also [18] and [25, Section 7.2]. 
We will return to the second eigenvalue in Section 6.5.

Remark 6.3. The eigendecomposition of Q�
n,λ,μ is given by (6.2)–(6.3) for all λ, μ ∈ R

such that λμ > 0. Indeed, the above derivation requires only the hypothesis λμ > 0.

6.2. Random walk in a unidimensional lattice

Consider a discrete-time Markov chain with n states 1, . . . , n and with matrix of 
transition probabilities given by

Pn,p,q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − p p

q 1 − p− q p

. . .
. . .

. . .

q 1 − p− q p

q 1 − q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6.4)

where p, q > 0 and p + q ≤ 1. Markov chains of this kind are referred to as random 
walks in the unidimensional lattice 1, . . . , n; see Fig. 6.1. The difference with respect to 
traditional random walks in Z is that states 1 and n act as absorbing/reflecting barriers: 
when the system is in state 1, it cannot go to a hypothetical previous state 0 with 
probability q (as it happens for all other states), because the probability q of going to a 
previous state 0 is absorbed in the probability of staying in state 1, which grows from 
1 − p − q to 1 − p; a similar discussion applies to state n. In this section, we derive the 
eigendecomposition of P�

n,p,q by simply noting that P�
n,p,q = In + Q�

n,p,q, where Qn,p,q

is given by (6.1) for (λ, μ) = (p, q). By (6.2)–(6.3), the eigenpairs of P�
n,p,q are given by 

(μk, wk), k = 0, . . . , n − 1, where

μ0 = 1, w0 =
[
1, α2, α4, . . . , α2n−2]�, (6.5)

and, for k = 1, . . . , n − 1,

μk = 1 − p− q + 2√pq cos θk, wk =
[
αi−1 sin(iθk) − αi−2 sin((i− 1)θk)

]n
i=1,

θk = kπ

n
,

(6.6)

with α =
√
p/q. The steady-state distribution of the unidimensional random walk, i.e., 

the normalized positive eigenvector of P�
n,p,q associated with the eigenvalue 1, is given 

by
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w0

‖w0‖1
= 1 − β

1 − βn

[
1, β, β2, . . . , βn−1]�, β = α2,

where it is understood that in the case β = 1 we take the limit β → 1.

6.3. Random walk in a multidimensional lattice

Let n = (n1, . . . , nd) ∈ Nd and let 1, . . . , n be the multi-index range {i ∈ Nd :
1 ≤ i ≤ n}, where 1 = (1, . . . , 1) and inequalities between vectors must be interpreted 
componentwise. When writing i = 1, . . . , n, we mean that i varies in 1, . . . , n following 
the lexicographic ordering: [ . . . [ [ (i1, . . . , id) ]id=1,...,nd

]id−1=1,...,nd−1 . . . ]i1=1,...,n1 ; see 
[21, Section 2.1.2] for more details on the multi-index notation.

Consider a discrete-time Markov chain with 
∏d

i=1 ni states 1, . . . , n and with matrix 
of transition probabilities

Pn,p,q =
d⊗

r=1
Pnr,pr,qr ,

where

• p = (p1, . . . , pd) and q = (q1, . . . , qd) satisfy p, q > 0 and p + q ≤ 1,
• the matrix Pnr,pr,qr is defined by (6.4) for (n, p, q) = (nr, pr, qr),
•
⊗

denotes the tensor (Kronecker) product.

Markov chains of this kind are referred to as random walks in the d-dimensional lattice 
1, . . . , n. They are a generalization of the unidimensional random walks discussed in Sec-
tion 6.2. By the properties of tensor products [21, Section 2.5], for all i, j = 1, . . . , n, the 
probability of going from state i to state j is given by (Pn,p,q)ij =

∏d
r=1(Pnr,pr,qr)irjr , 

and it is equal to the product for r = 1, . . . , d of the probability of going from state ir to 
state jr in a unidimensional random walk with transition matrix Pnr,pr,qr as considered 
in Section 6.2. In short, a d-dimensional random walk is the result of d independent 
unidimensional random walks (one for each space dimension); see Fig. 6.2 for a bidimen-
sional illustration. By the properties of tensor products and the results of Section 6.2, we 
immediately obtain the eigendecomposition of P�

n,p,q: the eigenpairs of P�
n,p,q are given 

by (μk, wk), k = 0, . . . , n− 1, where

μk =
d∏

r=1
μkr

, wk =
d⊗

r=1
wkr

,

and (μkr
, wkr

) is defined by (6.5)–(6.6) for (k, n, p, q, α) = (kr, nr, pr, qr, αr) with αr =√
pr/qr. The steady-state distribution of the d-dimensional random walk is given by
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Fig. 6.2. Random walk in a bidimensional lattice.

w0

‖w0‖1
=

d⊗
r=1

1 − βr

1 − βnr
r

[
1, βr, β

2
r , . . . , β

nr−1
r

]�
, βr = α2

r,

i.e., it is the tensor product of the steady-state distributions of the unidimensional ran-
dom walks that compose it.

6.4. Multidimensional diffusion processes

Consider a d-dimensional diffusion process, where the diffusions in each dimension are 
independent of each other and subject to a reflecting boundary condition at each side. 
We assume that, for every r = 1, . . . , d, the direction xr is discretized uniformly with 
nr nodes separated by a discretization step Δr > 0. This discretization gives rise to a 
n1×· · ·×nd lattice whose points xi are naturally indexed by a multi-index i = 1, . . . , n, 
with n = (n1, . . . , nd). The diffusion in direction xr is a Brownian motion characterized 
by two parameters: a drift μr ∈ R and a variance σ2

r > 0. For the direction xr, the 
infinitesimal generator Lnr,μr,σr

coincides with the generator of a 1-dimensional diffusion 
process with drift μr and variance σ2

r discretized uniformly with nr nodes separated by 
a discretization step Δr. In formulas,

Lnr,μr,σr
= Qnr,λ̃r,μ̃r

, λ̃r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
r

2Δ2
r

, if μr ≤ 0,

σ2
r

2Δ2
r

+ μr

Δr
, if μr ≥ 0,

μ̃r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
r

2Δ2
r

− μr

Δr
, if μr ≤ 0,

σ2
r

2Δ2
r

, if μr ≥ 0,
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where Qn,λ,μ is defined in (6.1). The differential operator (infinitesimal generator) of the 
d-dimensional diffusion process is given by

Ln,μ,σ =
d∑

i=1
In1 ⊗ · · · ⊗ Ini−1 ⊗ Lnr,μr,σr

⊗ Ini+1 ⊗ · · · ⊗ Ind
, (6.7)

where μ = (μ1, . . . , μd) and σ = (σ1, . . . , σd). More details on the discretized multidi-
mensional diffusion process considered here will be given in Section 6.5 along with an 
economics application; for more on diffusion processes, see [3] for a mathematical treat-
ment and [1,2,18] for an economical application-oriented approach. By the properties 
of tensor products and the results of Section 6.1, we can immediately obtain the eigen-
decomposition of L�

n,μ,σ. In particular, the eigenpairs of L�
n,μ,σ are given by (νk, wk), 

k = 0, . . . , n− 1, where

νk =
d∑

r=1
νkr

, wk =
d⊗

r=1
wkr

,

and (νkr
, wkr

) is defined by (6.2)–(6.3) for (k, n, λ, μ, τ) = (kr, nr, ̃λr, μ̃r, ̃τr) with 

τ̃r =
√
λ̃r/μ̃r. The steady-state distribution of the d-dimensional diffusion process gen-

erated by Ln,μ,σ, i.e., the normalized positive eigenvector of L�
n,μ,σ associated with the 

eigenvalue 0, is given by

p = w0

‖w0‖1
=

d⊗
r=1

1 − ρ̃r
1 − ρ̃nr

r

[
1, ρ̃r, ρ̃2

r, . . . , ρ̃
nr−1
r

]� =
d⊗

r=1
pr, ρ̃r = τ̃2

r , (6.8)

i.e., it is the tensor product of the steady-state distributions pr of the unidimensional 
diffusion processes generated by the operators Lnr,μr,σr

, r = 1, . . . , d.

6.5. Dynamics of wealth and income inequality

In this section, we present an economic application of the results obtained in Sec-
tion 6.4. We begin with an overview of the topic, which may not be so familiar to 
non-economists.

6.5.1. Modeling the evolution of wealth and income
The sources of the vast wealth and income inequality is a key topic of study within 

macroeconomics and finance [1,2,4,5]. Central to the questions of inequality are: What is 
the source of heterogeneity that drives the stationary distribution of income or wealth? 
How would the income or wealth distribution evolve over time given aggregate changes? 
For example, researchers can ask how the stationary distribution of wealth will change—
and how long it will take to be reached—given experiments such as a new income tax or 
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increases in the returns on an asset such as housing. The analysis of income inequality is 
done by examining the stationary distribution of discrete- or continuous-time stochastic 
processes associated with income or wealth. Typically, researchers act as follows.

• They choose a stochastic process for the assets of interest (for example, housing 
wealth, human wealth (i.e., wages), stocks, bonds, social security income, etc.).

• They use data to estimate the parameters of the stochastic process for that “port-
folio” of assets. In some cases, the parameters are derived from optimal control of a 
Hamilton–Jacobi–Bellman equation [1,2,5].

• They solve for the stationary distribution associated with the stochastic process. In 
this way, they can examine properties of the distribution, relate it back to the data, 
and conduct hypotheticals on the impact of policy.

With this approach, the emphasis on the steady-state distribution has come out of ne-
cessity. Even the convergence speed to the steady state has recently become an active 
research field [19,27].

6.5.2. Continuous-state formulation
Consider a portfolio of d assets X(t) = (X1(t), . . . , Xd(t)) evolving over time. 

We assume that X1(t), . . . , Xd(t) are d independent Brownian motions with drifts 
μ1, . . . , μd and variances σ2

1 , . . . , σ
2
d. We also assume that X1(t), . . . , Xd(t) take val-

ues in [0, 1], so that the portfolio X(t) determining an individual’s wealth is an el-
ement x = (x1, . . . , xd) ∈ [0, 1]d at any time t. The resulting stochastic process 
X(t) is a d-dimensional Brownian motion with drifts μ = (μ1, . . . , μd) and variances 
σ2 = (σ2

1 , . . . , σ
2
d), and with the edges of [0, 1]d acting as reflecting barriers. The prob-

ability density function pr(xr, t) for the asset Xr(t) at time t is determined by the 
Kolmogorov forward (Fokker–Planck) equation

∂pr
∂t

(xr, t) = −μr
∂pr
∂xr

(xr, t) + σ2
r

2
∂2pr
∂x2

r

(xr, t) (6.9)

subject to the boundary conditions induced by reflecting boundaries at 0 and 1:

0 = −μrpr(xr, t) + σ2
r

2
∂pr
∂xr

(xr, t), xr = 0, 1. (6.10)

The objects of interest are the following.

• The stationary density function pr(xr), i.e., the density function independent of t
satisfying (6.9)–(6.10). The function pr(xr) does not evolve over time and determines 
the limiting (equilibrium) density function p(x) = p1(x1) · · · pd(xd) characterizing the 
steady-state probability distribution of the process.
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• Any function W that maps a state x ∈ [0, 1]d to a scalar “wealth” or “payoff” W (x).1
Clearly, W (X(t)) is a random variable evolving over time together with the portfolio 
X(t), and we are interested in quantities like the average wealth E[W (X)] and the 
wealth variance Var[W (X)] computed in the steady-state distribution p(x), i.e.,

E[W (X)] =
∫

[0,1]d

W (x)p(x)dx,

Var[W (X)] = E[W (X)2] − E[W (X)]2

=
∫

[0,1]d

W (x)2p(x)dx −
( ∫
[0,1]d

W (x)p(x)dx
)2

.

6.5.3. Discrete-state formulation
Suppose we discretize [0, 1]d by introducing a n1 × · · · × nd lattice with nr points in 

direction xr separated by a discretization step Δr > 0, as in Section 6.4. This essentially 
means that we allow each asset Xr(t) to assume only a finite number of values. Conse-
quently, the portfolio X(t) can only be in a finite number of states x1, . . . , xn ∈ [0, 1]d. 
The use of upwind finite differences allow us to convert the 2d PDEs (6.9)–(6.10) to a 
unique system of ODEs

dp
dt (t) = L�

n,μ,σp(t) (6.11)

subject to an initial condition p(0), where Ln,μ,σ is the infinitesimal generator (6.7)
and pi(t) is the probability that the portfolio X(t) is in state xi at time t. After this 
discretization, the continuous-state continuous-time Markov process of Section 6.5.2 is 
changed into a discrete-state continuous-time Markov chain. Here, the objects of interest 
are the discrete counterparts of those mentioned in Section 6.5.2, i.e., the following.

• The stationary distribution p = (p1, . . . , pn) of the process, i.e., the probability 
vector independent of t satisfying (6.11). Clearly, p is given by (6.8).

• Any function W that maps a state xi to a scalar “wealth” or “payoff” W (xi) = Wi. 
Clearly, W (X(t)) is a random variable evolving over time together with the portfolio 
X(t), and we are interested in quantities like the average wealth E[W (X)] and the 
wealth variance Var[W (X)] computed in the steady-state distribution p, i.e.,

E[W (X)] = W · p, (6.12)

Var[W (X)] = E[W (X)2] − E[W (X)]2 = W2 · p − (W · p)2, (6.13)

1 As an example in the case d = 2, asset X1(t) could be housing wealth at time t and asset X2(t) could 
be bank holdings at time t in an individual’s portfolio. If w1 is the per-unit value of a house and w2
the per-unit value of a bank holding, then the “wealth” of an individual in state (X1, X2) = (x1, x2) is 
W (x1, x2) = w1x1 + w2x2.
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where W = (W1, . . . , Wn) is the vector (tensor) of payoffs and W2 is the compo-
nentwise square of W (in general, operations on vectors that have no meaning in 
themselves must be interpreted in the componentwise sense).

Since p is known, formulas (6.12)–(6.13) allow us to compute the average wealth and 
the wealth variance in the steady state of the process. This lets us analyze different 
hypothetical scenarios. For example, one could analyze how the wealth variance (a simple 
measure of inequality) would change if the variance of wages increases.

6.5.4. Convergence speed to the steady state
The results of Section 6.4 allow us to quantify the convergence speed to the steady 

state of the Markov chain presented in Section 6.5.3. Indeed, as we know from Section 6.4, 
all nonzero eigenvalues of Ln,μ,σ are negative and the largest of them, i.e., the second 
largest eigenvalue after 0, is given by

ν = max
r=1,...,d

(
−λ̃r − μ̃r + 2

√
λ̃rμ̃r cos π

nr

)
.

The second eigenvalue provides a measure of the convergence speed to the steady 
state because, for essentially every choice of the initial distribution p(0), the quantities 
p(t), E[W (X(t))], Var[W (X(t))] converge to their stationary counterparts p, E[W (X)], 
Var[W (X)] in (6.8), (6.12), (6.13) with asymptotic convergence rates given by

lim
t→∞

d
dt ln ‖p(t) − p‖2 = lim

t→∞
d
dt ln |E[W (X(t))] − E[W (X)]|

= lim
t→∞

d
dt ln |Var[W (X(t))] − Var[W (X)]| = ν;

see [18] and [25, Section 7.2] for more details.

6.5.5. Derivatives with respect to drifts and variances
For the convenience of economists, we here report the derivatives of the steady-state 

distribution p in (6.8), the average wealth E[W (X)] in (6.12), and the wealth variance 
Var[W (X)] in (6.13) with respect to the drifts μ and the variances σ2. For r = 1, . . . , d, 
we have

∂ρ̃r
∂μr

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
r

2Δ3
rμ̃

2
r

= 2Δrσ
2
r

(σ2
r − 2Δrμr)2

, if μr ≤ 0,

1
Δrμ̃r

= 2Δr

σ2
r

, if μr ≥ 0,

∂ρ̃r
2 = − μr

3 2 ,
∂σr 2Δrμ̃r
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Fig. 6.3. Changes in moments of the wealth distribution. Parameters are chosen to be illustrative: μ1 = μ2 =
0.01, σ2

1 = σ2
2 = 0.0025, and W (x1, x2) = x1 + x2.

∂pr

∂ρ̃r
= (1 − nr)ρ̃nr

r + nrρ̃
nr−1
r − 1

(1 − ρ̃nr
r )2

[
1, ρ̃r, ρ̃2

r, . . . , ρ̃
nr−1
r

]�
+ 1 − ρ̃r

1 − ρ̃nr
r

[
0, 1, 2ρ̃r, . . . , (nr − 1)ρ̃nr−2

r

]�
,

∂pr

∂μr
= ∂ρ̃r

∂μr

∂pr

∂ρ̃r
,

∂pr

∂σ2
r

= ∂ρ̃r
∂σ2

r

∂pr

∂ρ̃r
,

∂p
∂μr

= p1 ⊗ · · · ⊗ pr−1 ⊗
∂pr

∂μr
⊗ pr+1 ⊗ · · · ⊗ pd, (6.14)

∂p
∂σ2

r

= p1 ⊗ · · · ⊗ pr−1 ⊗
∂pr

∂σ2
r

⊗ pr+1 ⊗ · · · ⊗ pd, (6.15)

∂E[W (X)]
∂μr

= W · ∂p
∂μr

, (6.16)

∂E[W (X)]
∂σ2

r

= W · ∂p
∂σ2

r

, (6.17)

∂Var[W (X)]
∂μr

= W2 · ∂p
∂μr

− 2(W · p)
(
W · ∂p

∂μr

)
, (6.18)

∂Var[W (X)]
∂σ2

r

= W2 · ∂p
∂σ2

r

− 2(W · p)
(
W · ∂p

∂σ2
r

)
. (6.19)
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We remark that the above derivatives are defined even in the case μr = 0 and their values 
in this case are obtained by taking the limit of the corresponding expression as μr → 0. 
The derivatives (6.14)–(6.15) enable an analysis of how the steady state changes when 
properties of the underlying process change. For example, if the volatility of housing 
prices σ2

1 increases, equations (6.14)–(6.15) provide the resulting impact on the steady 
state. The derivatives (6.16)–(6.19) can be used to examine how key moments of the 
stationary distribution change. For example, a researcher could analyze the impact on 
the steady-state variance of the wealth distribution, i.e., Var[W (X)], in the case where 
the volatility of housing prices σ2

1 increases. Fig. 6.3 illustrates this by showing how 
the mean and variance of the stationary wealth distribution change with respect to the 
parameters of the underlying stochastic process. The figure has been realized through 
a discretization of the square [0, 1]2 by a n1 × n2 lattice with n1 = n2 = 31 points in 
each direction and (consequently) two equal discretization steps Δ1 = Δ2 = 1/30. It 
should be noted, however, that the graphs in Fig. 6.3 do not really depend on n1 and 
n2, because they converge to limiting graphs as n1, n2 → ∞ (and convergence is already 
reached for n1 = n2 = 31).

7. Conclusions and perspectives

We have studied the spectral properties of the generator Tn,ε,ϕ of the τε,ϕ algebra 
introduced by Bozzo and Di Fiore in the context of matrix displacement decomposition 
[10]. In particular:

• we have derived precise asymptotics for the outliers of Tn,ε,ϕ and the associated 
eigenvectors;

• through a different approach with respect to Losonczi [26], we have obtained the 
equations for the eigenvalues and eigenvectors of Tn,ε,ϕ, with a focus on the hyper-
bolic equations for the outlier eigenpairs;

• we have computed the full eigendecomposition of Tn,ε,ϕ in the case εϕ = 1.

Finally, we have presented applications of our results to queuing models, random walks, 
diffusion processes, and economics, with a special emphasis on wealth/income inequality 
and portfolio dynamics. We conclude this paper by mentioning a few possible future lines 
of research.

1. The applications presented herein do not exhaust all possible applications of the τε,ϕ
algebra. For example, τε,ϕ matrices arise in the discretization of differential equations 
by finite difference methods, finite element methods and, as recently discovered, iso-
geometric methods [17, Section 3]. A future research could take care of investigating 
further discretizations where τε,ϕ matrices arise and, consequently, the results of this 
paper apply.
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2. On the economics side, Sections 6.4–6.5 are interesting and useful, but the reflected 
constant-coefficient diffusion process X(t) that has been considered therein is not 
sufficient to understand top income inequality, since in that case researchers need 
alternative specifications [4,19]. That said, there could be a large class of stochas-
tic processes X̂(t) that can be mapped to X(t) through an appropriate change of 
measure. Loosely, given a stochastic process X̂(t), let Ŵ be a mapping such that 
Ŵ (X̂(t)) represents the “wealth” of an individual with portfolio X̂(t). Then, there 
may exist a change of measure P → Q (i.e., a Radon–Nikodym derivative dQ/dP ) 
mapping X̂(t) to X(t) and Ŵ (X̂(t)) to W (X(t)) for a suitable W . If so, then the 
computation of, say, the average wealth EP [Ŵ (X̂)] in the steady-state distribution 
of process X̂(t) could be traced back to computing the corresponding expectation 
EQ[W (X)] for process X(t) as we have done in Section 6.5; see [11, Section 9.5] for 
an analysis of changes in probability measures and associated expectations, as well as 
for practical tools for working with such concepts. A careful investigation of all this 
topic may form the content of a future research that would extend the applicability 
of the results presented in this paper.

Declaration of competing interest

The authors declare that they have no competing interest.

Acknowledgements

The authors thank Carmine Di Fiore for useful discussions and the anonymous review-
ers for useful remarks. Sven-Erik Ekström is supported by the Swedish Research Council 
through the International Postdoc Grant (Registration Number 2019-00495). Carlo Ga-
roni is supported by the MIUR Excellence Department Project awarded to the Depart-
ment of Mathematics of the University of Rome Tor Vergata (CUP E83C18000100006), 
by the Beyond Borders Programme of the University of Rome Tor Vergata through the 
Project ASTRID (CUP E84I19002250005), and by the Research Group GNCS (Gruppo 
Nazionale per il Calcolo Scientifico) of INdAM (Istituto Nazionale di Alta Matematica). 
Jesse Perla is supported in part by funding from the Social Sciences and Humanities 
Research Council.

References

[1] Y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions, B. Moll, Partial differential equation models in 
macroeconomics, Philos. Trans. R. Soc. Lond. A 372 (2014) 20130397.

[2] Y. Achdou, J. Han, J.-M. Lasry, P.-L. Lions, B. Moll, Income and wealth distribution in macroeco-
nomics: a continuous-time approach, Working Paper 23732, National Bureau of Economic Research, 
2017.

[3] P. Baldi, Stochastic Calculus: An Introduction Through Theory and Exercises, Springer, Cham, 
2017.

[4] J. Benhabib, A. Bisin, Skewed wealth distributions: theory and empirics, J. Econ. Lit. 56 (2018) 
1261–1291.

http://refhub.elsevier.com/S0024-3795(21)00240-8/bibA67B4FE3C6B8FC590BF60E394F51F6D3s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibA67B4FE3C6B8FC590BF60E394F51F6D3s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib8E4B1519DEC51F124BA21E5570DA6C8Bs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib8E4B1519DEC51F124BA21E5570DA6C8Bs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib8E4B1519DEC51F124BA21E5570DA6C8Bs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib52D2C372D7AF07CBF5177A7634332369s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib52D2C372D7AF07CBF5177A7634332369s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib5D1C67B8E827768BA0C00C4513CA32E2s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib5D1C67B8E827768BA0C00C4513CA32E2s1


S.-E. Ekström et al. / Linear Algebra and its Applications 627 (2021) 41–71 71
[5] J. Benhabib, A. Bisin, M. Luo, Wealth distribution and social mobility in the US: a quantitative 
approach, Am. Econ. Rev. 109 (2019) 1623–1647.

[6] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: a fresh approach to numerical computing, 
SIAM Rev. 59 (2017) 65–98.

[7] D. Bini, Matrix structures in queuing models, Lect. Notes Math. 2173 (2016) 65–159.
[8] D. Bini, M. Capovani, O. Menchi, Metodi Numerici per l’Algebra Lineare, Zanichelli, Bologna, 1988.
[9] A. Böttcher, S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia, 

2005.
[10] E. Bozzo, C. Di Fiore, On the use of certain matrix algebras associated with discrete trigonometric 

transforms in matrix displacement decomposition, SIAM J. Matrix Anal. Appl. 16 (1995) 312–326.
[11] G. Campolieti, R.N. Makarov, Financial Mathematics: A Comprehensive Treatment, CRC Press, 

Boca Raton, 2014.
[12] T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Harmonic Analysis on Finite Groups: Represen-

tation Theory, Gelfand Pairs and Markov Chains, Cambridge University Press, New York, 2008.
[13] H.-C. Chang, S.-E. Liu, R. Burridge, Exact eigensystems for some matrices arising from discretiza-

tions, Linear Algebra Appl. 430 (2009) 999–1006.
[14] C.M. Da Fonseca, S. Kouachi, D.A. Mazilu, I. Mazilu, A multi-temperature kinetic Ising model and 

the eigenvalues of some perturbed Jacobi matrices, Appl. Math. Comput. 259 (2015) 205–211.
[15] C.M. Da Fonseca, V. Kowalenko, Eigenpairs of a family of tridiagonal matrices: three decades later, 

Acta Math. Hung. 160 (2020) 376–389.
[16] C.M. Da Fonseca, F. Yilmaz, Some comments on k-tridiagonal matrices: determinant, spectra, and 

inversion, Appl. Math. Comput. 270 (2015) 644–647.
[17] S.-E. Ekström, I. Furci, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Are the eigenvalues 

of the B-spline isogeometric analysis approximation of −Δu = λu known in almost closed form?, 
Numer. Linear Algebra Appl. 25 (2018) e2198.

[18] X. Gabaix, Power laws in economics and finance, Annu. Rev. Econ. 1 (2009) 255–293.
[19] X. Gabaix, J.-M. Lasry, P.-L. Lions, B. Moll, The dynamics of inequality, Econometrica 84 (2016) 

2071–2111.
[20] C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, 

vol. I, Springer, Cham, 2017.
[21] C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, 

vol. II, Springer, Cham, 2018.
[22] G. Giambene, Queuing Theory and Telecommunications: Networks and Applications, second edition, 

Springer, New York, 2014.
[23] R.A. Horn, C.R. Johnson, Matrix Analysis, second edition, Cambridge University Press, New York, 

2013.
[24] W.G. Kelley, A.C. Peterson, Difference Equations: An Introduction with Applications, second edi-

tion, Academic Press, San Diego, 2001.
[25] G.F. Lawler, Introduction to Stochastic Processes, second edition, CRC Press, Boca Raton, 2006.
[26] L. Losonczi, Eigenvalues and eigenvectors of some tridiagonal matrices, Acta Math. Hung. 60 (1992) 

309–322.
[27] E.G.J. Luttmer, Selection, growth, and the size distribution of firms, Q. J. Econ. 122 (2007) 

1103–1144.
[28] P. Rózsa, On periodic continuants, Linear Algebra Appl. 2 (1969) 267–274.

http://refhub.elsevier.com/S0024-3795(21)00240-8/bib86BA98B6E28D3FA2926CD15C34F1F0BCs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib86BA98B6E28D3FA2926CD15C34F1F0BCs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib2344521E389D6897AE7AF9ABF16E7CCCs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib2344521E389D6897AE7AF9ABF16E7CCCs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib0E1FCA0F3F3F737861EADF25C1E99E46s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib0F2119D086EE35F18B407615E430FA88s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib461B1990FE86AF962CD15A16A26DCEB8s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib461B1990FE86AF962CD15A16A26DCEB8s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib504043CFE438F528CB5E73C4347A7A0As1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib504043CFE438F528CB5E73C4347A7A0As1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib012D69C208D33A9C1F31FF5F475998E2s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib012D69C208D33A9C1F31FF5F475998E2s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibCD5A2ACBA7803F91A4D8B36B6EC16BDFs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibCD5A2ACBA7803F91A4D8B36B6EC16BDFs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibB1DE5532DCFFB2026F6200F673E55AE8s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibB1DE5532DCFFB2026F6200F673E55AE8s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib52415360C676C391AAED4C3E5E995BC1s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib52415360C676C391AAED4C3E5E995BC1s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE60902AF7BFB7054C040F7B445871D57s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE60902AF7BFB7054C040F7B445871D57s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibDBC43223512C3440ACFF4B5D34187048s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibDBC43223512C3440ACFF4B5D34187048s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE58BA16CFD5FB64BDF4D5ADF12F362CEs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE58BA16CFD5FB64BDF4D5ADF12F362CEs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE58BA16CFD5FB64BDF4D5ADF12F362CEs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibDA52BB6EDC5B19A09DD402D836EC2C29s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib28425614C175B2068908F32AFA93E58Fs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib28425614C175B2068908F32AFA93E58Fs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibFFC28DF191A1586496B3A84F6805BD6Bs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibFFC28DF191A1586496B3A84F6805BD6Bs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib98CFA45F8E35984BD8F015D14E56E102s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib98CFA45F8E35984BD8F015D14E56E102s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib65610730E9CF2F1C68BBA7968187C537s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib65610730E9CF2F1C68BBA7968187C537s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE0CA540DD370A7796FF1B694A9992D2Fs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibE0CA540DD370A7796FF1B694A9992D2Fs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib3A52F3C22ED6FCDE5BF696A6C02C9E73s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib3A52F3C22ED6FCDE5BF696A6C02C9E73s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib9B01D99A4DA8B9E7BF23CD67F2B3BF7Bs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib9BD0E7F41DBC6CC33EF4A06DEC2068CBs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib9BD0E7F41DBC6CC33EF4A06DEC2068CBs1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib911328A04B3B48FB591AD6234F3283D9s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bib911328A04B3B48FB591AD6234F3283D9s1
http://refhub.elsevier.com/S0024-3795(21)00240-8/bibDBB687882891AB5F1C7AD11A968A693Ds1

	Eigenvalues and eigenvectors of tau matrices with applications to Markov processes and economics
	1 Introduction
	2 Basic properties of the eigenvalues and eigenvectors of Tn,ε,φ
	3 Asymptotics of the outliers of Tn,ε,φ
	4 Equations for the eigenvalues and eigenvectors of Tn,ε,φ
	4.1 Case 1: λ∈(−2,2)
	4.2 Case 2: λ∈(2,∞)
	4.3 Case 3: λ=2
	4.4 Case 4: λ∈(−∞,−2)
	4.5 Case 5: λ=−2

	5 Eigendecomposition of Tn,ε,φ for specific choices of ε and φ
	5.1 ε,φ∈{0,1,−1}
	5.2 εφ=1

	6 Applications
	6.1 Queuing model
	6.2 Random walk in a unidimensional lattice
	6.3 Random walk in a multidimensional lattice
	6.4 Multidimensional diffusion processes
	6.5 Dynamics of wealth and income inequality
	6.5.1 Modeling the evolution of wealth and income
	6.5.2 Continuous-state formulation
	6.5.3 Discrete-state formulation
	6.5.4 Convergence speed to the steady state
	6.5.5 Derivatives with respect to drifts and variances


	7 Conclusions and perspectives
	Declaration of competing interest
	Acknowledgements
	References


